18 research outputs found

    The importance of the exposome and allostatic load in the planetary health paradigm

    Get PDF
    In 1980, Jonas Salk (1914-1995) encouraged professionals in anthropology and related disciplines to consider the interconnections between "planetary health," sociocultural changes associated with technological advances, and the biology of human health. The concept of planetary health emphasizes that human health is intricately connected to the health of natural systems within the Earth's biosphere; experts in physiological anthropology have illuminated some of the mechanisms by which experiences in natural environments (or the built environment) can promote or detract from health. For example, shinrin-yoku and related research (which first emerged from Japan in the 1990s) helped set in motion international studies that have since examined physiological responses to time spent in natural and/or urban environments. However, in order to advance such findings into planetary health discourse, it will be necessary to further understand how these biological responses (inflammation and the collective of allostatic load) are connected to psychological constructs such as nature relatedness, and pro-social/environmental attitudes and behaviors. The exposome refers to total environmental exposures-detrimental and beneficial-that can help predict biological responses of the organism to environment over time. Advances in "omics" techniques-metagenomics, proteomics, metabolomics-and systems biology are allowing researchers to gain unprecedented insight into the physiological ramifications of human behavior. Objective markers of stress physiology and microbiome research may help illuminate the personal, public, and planetary health consequences of "extinction of experience." At the same time, planetary health as an emerging multidisciplinary concept will be strengthened by input from the perspectives of physiological anthropology.Peer reviewe

    Tone burst-evoked otoacoustic emissions in neonates: normative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tone-burst otoacoustic emissions (TBOAEs) have not been routinely studied in pediatric populations, although tone burst stimuli have greater frequency specificity compared with click sound stimuli. The present study aimed (1) to determine an appropriate stimulus level for neonatal TBOAE measurements when the stimulus center frequency was 1 kHz, (2) to explore the characteristics of 1 kHz TBOAEs in a neonatal population.</p> <p>Methods</p> <p>A total of 395 normal neonates (745 ears) were recruited. The study consisted of two parts, reflecting the two study aims. Part I included 40 normal neonatal ears, and TBOAE measurement was performed at five stimulus levels in the range 60–80 dB peSPL, with 5 dB incremental steps. Part II investigated the characteristics of the 1 kHz TBOAE response in a large group of 705 neonatal ears, and provided clinical reference criteria based on these characteristics.</p> <p>Results</p> <p>The study provided a series of reference parameters for 1 kHz TBOAE measurement in neonates. Based on the results, a suggested stimulus level and reference criteria for 1 kHz TBOAE measures with neonates were established. In addition, time-frequency analysis of the data gave new insight into the energy distribution of the neonatal TBOAE response.</p> <p>Conclusion</p> <p>TBOAE measures may be a useful method for investigating cochlear function at specific frequency ranges in neonates. However, further studies of both TBOAE time-frequency analysis and measurements in newborns are needed.</p

    Otoacoustic Emissions from Residual Oscillations of the Cochlear Basilar Membrane in a Human Ear Model

    No full text
    Sounds originating from within the inner ear, known as otoacoustic emissions (OAEs), are widely exploited in clinical practice but the mechanisms underlying their generation are not entirely clear. Here we present simulation results and theoretical considerations based on a hydrodynamic model of the human inner ear. Simulations show that, if the cochlear amplifier (CA) gain is a smooth function of position within the active cochlea, filtering performed by a middle ear with an irregular, i.e., nonsmooth, forward transfer function suffices to produce irregular and long-lasting residual oscillations of cochlear basilar membrane (BM) at selected frequencies. Feeding back to the middle ear through hydrodynamic coupling afforded by the cochlear fluid, these oscillations are detected as transient evoked OAEs in the ear canal. If, in addition, the CA gain profile is affected by irregularities, residual BM oscillations are even more irregular and tend to evolve towards self-sustaining oscillations at the loci of gain irregularities. Correspondingly, the spectrum of transient evoked OAEs exhibits sharp peaks. If both the CA gain and the middle-ear forward transfer function are smooth, residual BM oscillations have regular waveforms and extinguish rapidly. In this case no emissions are produced. Finally, and paradoxically albeit consistent with observations, simulating localized damage to the CA results in self-sustaining BM oscillations at the characteristic frequencies (CFs) of the sites adjacent to the damage region, accompanied by generation of spontaneous OAEs. Under these conditions, stimulus-frequency OAEs, with typical modulation patterns, are also observed for inputs near hearing threshold. This approach can be exploited to provide novel diagnostic tools and a better understanding of key phenomena relevant for hearing science
    corecore