641 research outputs found

    Toxicity to immune checkpoint inhibitors presenting as pulmonary arterial vasculopathy and rapidly progressing right ventricular dysfunction

    Get PDF
    Introduction: Immune Checkpoint Inhibitors (ICIs) are antitumor drugs associated with a number of serious immune-related adverse events (IRAEs). ICIs enhance anti-tumor immunity, thereby  energized  patient's immune system to fight cancer. IRAEs may affect functions of various organs, including heart, and may lead to morbidity and, to some  extent  mortality. Left ventricle (LV) myocarditis with dysfunction is a known side effect of this class of drugs. However, right ventricle (RV) myocarditis and pulmonary vasculitis are an unknown entity and has not been previously reported.  Here, we present the first case of  IRAEs causing selective RV involvement with dysfunctions, attributed to immune checkpoint inhibitors described till date in medical literature.Presentation of Case: A 58-year male presented  with history of low-grade fever and  weight loss. On palpation, he had diffuse cervical lymphadenopathy. Histopathology evaluation of  lymph node revealed  metastatic lesions of Renal Cell Carcinoma (RCC).Conclusion: Fatal cardiovascular adverse events can occur as a side effect of ICI. The combination of RV myocarditis with progressive pulmonary hypertension is fatal. Treatment with high dose corticosteroids and immunomodulators may help in patient survival. Physicians treating patients with ICIs should be aware of their lethal cardiotoxic side effects  to reduce adverse cardiac outcomes. Because the number of patients exposed to this new immune therapy is expected to increase remarkably in the near future, our study encourages further work to define guidelines for cardiovascular monitoring and management

    An investigation into the age and origin of Suranga in the foothills of the Western Ghats of India

    Get PDF
    This document is the Accepted Manuscript version. The final publication is available at Springer via: https://doi.org/10.1007/s12685-015-0125-yThis paper presents the evidence for determining the age and origin of suranga irrigation found mainly in southern Karnataka and northern Kerala in the foothills of the Western Ghats of south India. It draws on on-going research that has attempted to use an interdisciplinary approach to date the system using Indian Archives, British and Portuguese colonial archives, etymology, oral testimony archaeology, phenology and palaeo dating techniques. The results from this study put the origins of the system at around 1900–1940 CE. These results are compared with the current academic discourse that supports the view that the system originates from ancient Persia and qanat technology, because of the long established trade links with Persia and the Arabian Peninsula in the Malabar region. We argue that a new ‘origin discourse’ should be framed around these much more recent dates. The methodological constraints behind both theories are discussed throughout to enable the reader to appreciate the limitations of both arguments.Peer reviewedFinal Accepted Versio

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life.

    Get PDF
    BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Metabolism of 2-Chloro-4-Nitrophenol in a Gram Negative Bacterium, Burkholderia sp. RKJ 800

    Get PDF
    A 2-Chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP. Manganese dependent HQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain RKJ 800 that suggested the cleavage of the HQ to γ-hydroxymuconic semialdehyde. On the basis of the 16S rRNA gene sequencing, strain RKJ 800 was identified as a member of genus Burkholderia. Our studies clearly showed that Burkholderia sp. RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway. The pathway identified in a gram negative bacterium, Burkholderia sp. strain RKJ 800 was differed from previously reported 2C4NP degradation pathway in another gram-negative Burkholderia sp. SJ98. This is the first report of the formation of CHQ and HQ in the degradation of 2C4NP by any gram-negative bacteria. Laboratory-scale soil microcosm studies showed that strain RKJ 800 is a suitable candidate for bioremediation of 2C4NP contaminated sites

    Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    Get PDF
    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradatio

    Loss of heterozygosity as a marker of homologous repair deficiency in multiple myeloma: a role for PARP inhibition?

    Get PDF
    PARP inhibitors can induce synthetic lethality in tumors characterized by homologous recombination deficiency (HRD), which can be detected by evaluating genome-wide loss of heterozygosity (LOH). Multiple myeloma (MM) is a genetically unstable tumor and we hypothesized that HRD-related LOH (HRD-LOH) could be detected in patient samples, supporting a potential role for PARP inhibition in MM. Using results from targeted next-generation sequencing studies (FoundationOne® Heme), we analyzed HRD-LOH in patients at all disease stages (MGUS (n = 7), smoldering MM (SMM, n = 30), newly diagnosed MM (NDMM, n = 71), treated MM (TRMM, n = 64), and relapsed MM (RLMM, n = 234)) using an algorithm to identify HRD-LOH segments. We demonstrated HRD-LOH in MM samples, increasing as disease progresses. The extent of genomic HRD-LOH correlated with high-risk disease markers. Outcome of RLMM patients, the biggest clinical group, was analyzed and patients with HRD-LOH above the third quartile (≥5% HRD-LOH) had significantly worse progression-free and overall survival than those with lower levels (p < 0.001). Mutations in key homologous recombination genes account for some, but not all, of the cases with an excess of HRD-LOH. These data support the further evaluation of PARP inhibitors in MM patients, particularly in the relapsed setting with a high unmet need for new treatments
    corecore