79 research outputs found

    Evaluation of a simplified model for estimating energy balance in broilers production housing

    Get PDF
    The simulation of poultry house thermal behavior with and without Adiabatic Evaporative Cooling (SRAE) allows the decision makers to evaluate the economical feasibility and the installation costs of a poultry production business. The first step in this research investigation was test the thermal behavior model developed by Gates et al. (1995) for broiler houses in the United States based on the hypothesis that this model, using climatized sheds, as proposed by the authors, could be used under Brazilian conditions. The model is suitable for the proposed objective in the form proposed by Gates et al. (1995) for poultry houses with an elevated mass air flow rate (120.8 kg air s -1 or higher). A correction factor referring to a series of heat sources not included in the model, or the inclusion of these sources, is necessary for poultry houses without a high mass air flow.A simulação do comportamento térmico de galpões avícolas com e sem Sistemas de Resfriamento Adiabáticos Evaporativos (SRAE) permite aos tomadores de decisão avaliarem a viabilidade econômica e os custos da instalação de um empreendimento na avicultura de corte. Para operacionalização desta investigação, o primeiro passo foi a execução do teste do modelo de comportamento térmico desenvolvido por Gates et al. (1995) para galpões avícolas nos Estados Unidos, com base na hipótese de que este modelo, utilizando-se galpões climatizados, como sugerido pelos autores, possa ser usado em condições brasileiras. O modelo se mostrou adequado para o objetivo previsto, na forma indicada por Gates et al. (1995) para galpões com vazão mássica do ar elevada, (120,8 kg de ar por segundo ou maior). É necessário um fator de correção referente a uma série de fontes de calor desprezada pelo modelo para galpões sem uma grande vazão mássica, ou a inclusão dessas fontes

    Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization

    Full text link
    Modifications of the electromagnetic Maxwell Lagrangian in four dimensions have been considered by some authors. One may include an explicit massive term (Proca) and a topological but not Lorentz-invariant term within certain observational limits. We find the dual-corresponding gauge invariant version of this theory by using the recently suggested gauge embedding method. We enforce this dualisation procedure by showing that, in many cases, this is actually a constructive method to find a sort of parent action, which manifestly establishes duality. We also use the gauge invariant version of this theory to formulate a Batalin-Vilkovisky quantization and present a detailed discussion on the excitation spectrum.Comment: 8 page

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures

    Comparing Implicit, Differential, Dimensional and BPHZ Renormalisation

    Get PDF
    We compare a momentum space implicit regularisation (IR) framework with other renormalisation methods which may be applied to dimension specific theories, namely Differential Renormalisation (DfR) and the BPHZ formalism. In particular, we define what is meant by minimal subtraction in IR in connection with DfR and dimensional renormalisation (DR) .We illustrate with the calculation of the gluon self energy a procedure by which a constrained version of IR automatically ensures gauge invariance at one loop level and handles infrared divergences in a straightforward fashion. Moreover, using the ϕ44\phi^4_4 theory setting sun diagram as an example and comparing explicitly with the BPHZ framework, we show that IR directly displays the finite part of the amplitudes. We then construct a parametrization for the ambiguity in separating the infinite and finite parts whose parameter serves as renormalisation group scale for the Callan-Symanzik equation. Finally we argue that constrained IR, constrained DfR and dimensional reduction are equivalent within one loop order.Comment: 21 pages, 2 figures, late

    Chiral Anomaly and CPT invariance in an implicit momentum space regularization framework

    Full text link
    This is the second in a series of two contributions in which we set out to establish a novel momentum space framework to treat field theoretical infinities in perturbative calculations when parity-violating objects occur. Since no analytic continuation on the space-time dimension is effected, this framework can be particularly useful to treat dimension-specific theories. Moreover arbitrary local terms stemming from the underlying infinities of the model can be properly parametrized. We (re)analyse the undeterminacy of the radiatively generated CPT violating Chern-Simons term within an extended version of QED4QED_4 and calculate the Adler-Bardeen-Bell-Jackiw triangle anomaly to show that our framework is consistent and general to handle the subtleties involved when a radiative corretion is finite.Comment: 16 pages, LaTeX, version to appear in PR

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page

    Aspects of Causality and Unitarity and Comments on Vortex-like Configurations in an Abelian Model with a Lorentz-Breaking Term

    Full text link
    The gauge-invariant Chern-Simons-type Lorentz- and CPT-breaking term is here reassessed and a spin-projector method is adopted to account for the breaking (vector) parameter. Issues like causality, unitarity, spontaneous gauge-symmetry breaking and vortex formation are investigated, and consistency conditions on the external vector are identified.Comment: 12 pages, late
    corecore