11 research outputs found

    New insights into the genetic etiology of Alzheimer's disease and related dementias.

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Targeted sequencing of ABCA7 identifies splicing, stop-gain and intronic risk variants for Alzheimer disease

    No full text
    ‱Sequencing of the Alzheimer disease risk locus ABCA7 is performed.‱Several Alzheimer’s disease risk variants are identified in the gene ABCA7.‱Three previously associated ABCA7 variants are confirmed.‱A 3â€Č-UTR splice variant in ABCA7 is identified as a potential risk variant. Several variants in the gene ABCA7 have been identified as potential causal variants for late-onset Alzheimer’s disease (LOAD). In order to replicate these findings, and search for novel causal variants, we performed targeted sequencing of this gene in cohorts of non-Hispanic White (NHW) and African-American (AA) LOAD cases and controls. We sequenced the gene ABCA7 in 291 NHW LOAD cases and 103 controls. Variants were prioritized for rare, damaging variants and previously reported variants associated with LOAD, and were follow-up genotyped in 4076 NHW and 1157 AA cases and controls. We confirm three previously associated ABCA7 risk variants and extend two of these associations to other populations, an intronic variant in NHW (P=3.0×10−3) (originally reported in a Belgian population), and a splice variant originally associated in the Icelandic population, which was significantly associated in the NHW cohort (P=1.2×10−6) and nominally associated in the AA cohort (P=0.017). We also identify a 3â€Č-UTR splice variant that segregates in four siblings of one family and is nominally associated with LOAD (P=0.040). Multiple variants in ABCA7 contribute to LOAD risk

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease

    Correction: Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation (Molecular Psychiatry, (2018), 10.1038/s41380-018-0112-7)

    No full text
    Following publication, the authors noticed that ‘Laura Cantwell’, ‘Otto Valladares’, and ‘Li-San Wang’ were inadvertently omitted from the author list. These authors have now been added to the author list in 21st, 77th, and 79th position, respectively. This has been corrected in both the PDF and HTML versions of the article

    Convergent genetic and expression data implicate immunity in Alzheimer's disease.

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageLate-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis.The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain.ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 × 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 × 10(-11)), cholesterol transport (P = 2.96 × 10(-9)), and proteasome-ubiquitin activity (P = 1.34 × 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05).The immune response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.Wellcome Trust Medical Research Council Alzheimer's Research UK Welsh Assembly Government National Institutes of Health, National Institute on Aging (NIH-NIA) Erasmus Medical Center Erasmus University French National Foundation on Alzheimer's Disease and Related Disorders Centre National de Genotypage Institut Pasteur de Lille Inserm FRC (Fondation pour la Recherche sur le Cerveau) Rotary LABEX (Laboratory of Excellence Program Investment for the Future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease) Alzheimer's Associatio

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele. © 2022. The Author(s)

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    No full text
    Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s)

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    No full text
    Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s)

    Author Correction: Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores (Nature Communications, (2021), 12, 1, (3417), 10.1038/s41467-021-22491-8)

    No full text
    The original version of this Article omitted from the author list the 212th author Patrizia Mecocci, who is from the Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy. Consequently, the “Sample Contribution” section of Author Contributions was updated to add “P.M” between “P.D.” and “R.C.”. Additionally, the original version of this Article contained the incorrect affiliation for author Patrick Gavin Kehoe, which incorrectly read “German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany”. The correct version replaces this affiliation with “Bristol Medical School (THS), University of Bristol, Southmead Hospital, Bristol, UK”. This has been corrected in both the PDF and HTML versions of the Article. © The Author(s) 2023
    corecore