1,430 research outputs found

    Author Correction: Systematic evaluation of 2′-Fluoro modified chimeric antisense oligonucleotide-mediated exon skipping in vitro

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-019-42523-0, published online 15 April 201

    Non-structural mitigation programs for sediment-related disasters after the Chichi Earthquake in Taiwan

    Get PDF
    Following the Chichi Earthquake (M(L)=7.3) in 1999, sediment-related disasters, such as landslides and debris flows, have become more frequent in Taiwan. Because engineering structures cannot be fully and rapidly emplaced, the government has initiated non-structural hazard mitigation programs. Initially, community debris flow evacuation drills were promoted in 2000. Typhoon Toraji caused numerous debris flow events in July 2001, and some communities evacuated according to the drills, significantly reducing the numbers of possible casualties. Based on that result, the government expanded the program for evacuation drills. Secondly, the early warning system created after the Chichi Earthquake will prevent many potential future casualties. Rainfall threshold values for debris flow warnings in different areas are determined from information received from local weather stations and modified for local geomorphologic situations. Realtime information is gradually being integrated to create a debris flow disaster warning system, the goal of which is to provide warnings to zones in which debris flows are likely. The warning system was launched in 2005 and has two levels of alarms: yellow and red. The final, red alarm triggers enforced evacuation. Overall, the decrease in casualties from debris flows during the decade after the Chichi Earthquake is not the result of a decrease in number or severity of sediment related disasters, but is more directly related to the gradually improved early warning and evacuation system. However, the compound hazards resulting from Typhoon Morakot in 2009 remind us of the ongoing need for improving the existing mitigation system

    Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type 1 diabetic rats

    Get PDF
    Purpose: To investigate the inhibitory effect of rhubarb on α-glucosidase activity in the small intestine of rats with type 1 diabetes.Methods: Type 1 diabetic rat model was established by intraperitoneally injecting 30 male SD rats with 1 % streptozocin (STZ). Rats with fasting blood glucose > 11 mmol/L (24) were used for the study. The rats were randomly divided into three equal groups including control, acarbose and rhubarb groups. Arcabose® (20 mg/kg /day) and rhubarb (100 mg/kg /day) were given by intra-gastric route via insertion of the cannula through the esophagus. Daily fasting blood glucose and daily postprandial glucose levels were assayed for all groups. On day 6, postprandial blood glucose, blood levels of C-peptide and insulin, and intestinal α-glucosidase were also determined.Results: There were no significant differences in levels of C-peptide, insulin and fasting blood glucose between control, Acarbose® and rhubarb groups (p > 0.05). However, α-glucosidase activity at 0, 30, 60 and 120 min in the rhubarb group was 1759.2, 1812.8, 1379.8 and 772.1 U, respectively,) while in the Acarbose® group it was 178.6, 1260.1, 1126.5, 599.2 U, respectively. α-Glucosidase activity in both groups initially showed an increase (p < 0.05), followed by a decline from 60 to 120 min (p ˂ 0.05). After 120 min, α-glucosidase activity in each of the two groups was significantly decreased compared with untreated control (1200 U) (p ˂ 0.05).Conclusion: The inhibitory effect of rhubarb on intestinal α-glucosidase activity of Type 1 diabetic rats is comparable to that of Arcabose®.This suggests that this plant may have clinically potent anti-diabetic properties.Keywords: Type 1 diabetes, α-Glucosidase activity, Acarbose®, Rhubarb, Postprandial glucose leve

    Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal

    Full text link
    Four methods for determining the composition of low-level uranium- and thorium-chain surface contamination are presented. One method is the observation of Cherenkov light production in water. In two additional methods a position-sensitive proportional counter surrounding the surface is used to make both a measurement of the energy spectrum of alpha particle emissions and also coincidence measurements to derive the thorium-chain content based on the presence of short-lived isotopes in that decay chain. The fourth method is a radiochemical technique in which the surface is eluted with a weak acid, the eluate is concentrated, added to liquid scintillator and assayed by recording beta-alpha coincidences. These methods were used to characterize two `hotspots' on the outer surface of one of the He-3 proportional counters in the Neutral Current Detection array of the Sudbury Neutrino Observatory experiment. The methods have similar sensitivities, of order tens of ng, to both thorium- and uranium-chain contamination.Comment: 22 pages, 19 figure

    Constraints on Neutrino Parameters from Neutral-Current Solar Neutrino Measurements

    Full text link
    We generalize the pull approach to define the χ2\chi^2 function to the analysis of the data with correlated statistical errors. We apply this method to the analysis of the Sudbury Neutrino Collaboration data obtained in the salt-phase. In the global analysis of all the solar neutrino and KamLAND data we find the best fit (minimum χ2\chi^2) values of neutrino parameters to be tan2θ120.42\tan^2 \theta_{12} \sim 0.42 and δm1227.1×105\delta m_{12}^2 \sim 7.1 \times 10^{-5} eV2^2. We confirm that the maximal mixing is strongly disfavored while the bounds on δm122\delta m_{12}^2 are significantly strengthened.Comment: 6 figures. Some typos are corrected, figures are visually improve

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23

    Full text link
    We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H-alpha observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H-alpha observations revealed two successive ejections (of speeds ~350 and ~100 km/s), originating from the same filament channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s, respectively). These two ejections generated propagating fast shock waves (i.e., fast drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic

    X-Ray Magnetic Circular Dichroism at the K edge of Mn3GaC

    Full text link
    We theoretically investigate the origin of the x-ray magnetic circular dichroism (XMCD) spectra at the K edges of Mn and Ga in the ferromagnetic phase of Mn3GaC on the basis of an ab initio calculation. Taking account of the spin-orbit interaction in the LDA scheme, we obtain the XMCD spectra in excellent agreement with the recent experiment. We have analyzed the origin of each structure, and thus elucidated the mechanism of inducing the orbital polarization in the p symmetric states. We also discuss a simple sum rule connecting the XMCD spectra with the orbital moment in the p symmetric states.Comment: 5 pages, 5 figures, accepted for publication in Physical Review

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD
    corecore