29 research outputs found

    Observation of multiple doubly degenerate bands in ¹⁹⁵Tl

    Get PDF
    The High-spin states in 195 Tl, populated through the 185,187 Re( 13 C, xn) fusion evaporation reaction at the beam energy of 75 MeV, were studied using the Indian National Gamma Array (INGA). More than 50 new γ transitions have been placed in the proposed level scheme which is extended up to the excitation energy of ≈ 5.6 MeV and spin =22.5ħ . Two pairs of degenerate bands based on two different quasi-particle configurations have been identified in this nucleus indicating the first observation of such bands in an odd- A nucleus in A∼190 region and signify the first evidence of multiple chiral bands in a nucleus in this region. The total Routhian surface calculations predict triaxial shapes for both the configurations and thereby, support the experimental observation. The importance of multiple neutron holes in the i13/2 orbital and the stability of shapes for these two configurations have been discussed.Financial support of Department of Science & Technology, Govt. of India for clover detectors of INGA (Grant No. IR/S2/PF-03/2003-II) is greatfully acknowledged. One of the authors (S. Bhattacharya) acknowledges with thanks the financial support received as Raja Ramanna Fellowship from the Department of Atomic Energy, Govt. of India. T.R and Md. A.A acknowledge with thanks the financial support received as research fellows from the Department of Atomic Energy (DAE), Govt. of India

    Seed dormancy and germination in Dodonaea viscosa (Sapindaceae) from south-western Saudi Arabia

    Get PDF
    Dodonaea viscosa (Sapindaceae) is widespread in the mountainous highlands of the southwestern part of the Kingdom of Saudi Arabia, where it is a medicinally important species for the people of Saudi Arabia. Seeds of this species were collected from Mount Atharb in the Al-Baha region, at an altitude of 2100 m. The aims of this study were to determine if the seeds of D. viscosa have physical dormancy (i.e. a water-impermeable seed coat) and, if so, what treatments would break dormancy, and what conditions promote germination after dormancy has been broken. The dormancy-breaking treatments included: soaking of seeds in concentrated sulfuric acid (H2SO4) for 10 minutes, immersion in boiling water for 10 minutes and exposure to 50 °C for 1 minute. After seeds had been pre-treated with H2SO4, to break dormancy, they were incubated at constant temperatures from 5 to 35°C, under 12-h photoperiods or in continuous darkness, and germination recorded. Salinity tolerance was investigated by incubating acid-scarified seeds in 0, 100, 200 and 300 mM NaCl in the light at 25°C. Untreated seeds had low final germination (30%). Seeds that had been acid-scarified, immersed in boiling water or exposed to 50 °C all achieved 91% subsequently when incubated at 25°C. Thus, seeds of this species in Saudi Arabia have physical dormancy, which can be broken by all three treatments designed to increase the permeability of the testa. After pre-treatment, there was a broad optimum constant temperature for germination that ranged between 5-25°C but germination was inhibited by higher temperatures (30 and 35°C). Light had little effect on this germination response. Scarified seeds were also sensitive to salinity, with the highest germination in distilled water and complete inhibition in 400 mM NaCl. Seeds that failed to germinate in saline treatments were mostly able to germinate on transfer to distilled water, suggesting osmotic inhibition

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    High spin states of 37Ar^{37}\mathrm{Ar}

    No full text
    International audienceHigh spin states of Ar37, populated through the Al27(C12,np)Ar37 reaction with a 40 MeV C12 beam, were studied using the Indian National Gamma Array (INGA) facility. The existing level scheme has been extended up to 10.5 MeV by adding some new levels and transitions. The spins and parities of the new levels were assigned from RDCO, RADO, and linear polarization measurements. The spins and parities of the existing levels also were modified or confirmed in the present experiment. The multipole mixing ratios (δ) for most of the transitions were measured and compared with the earlier measurements wherever available. Large basis shell model calculations with different particle restrictions in sd and pf orbitals were performed to understand the microscopic origin of these levels. A simple two-level mixing calculation was also performed to extract the amount of multiparticle multihole configuration mixing for a few levels
    corecore