1,659 research outputs found
XMM-Newton view of MS0735+7421: the most energetic AGN outburst in a galaxy cluster
We discuss the possible cosmological effects of powerful AGN outbursts in
galaxy clusters by starting from the results of an XMM-Newton observation of
the supercavity cluster MS0735+7421.Comment: 6 pages, 5 figures. To appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching
(Germany
The Dirac Equation Is Separable On The Dyon Black Hole Metric
Using the tetrad formalism, we carry out the separation of variables for the
massive complex Dirac equation in the gravitational and electromagnetic field
of a four-parameter (mass, angular momentum, electric and magnetic charges)
black hole.Comment: 13 page
The fermion dynamical symmetry model for the even--even and even--odd nuclei in the Xe--Ba region
The even--even and even--odd nuclei Xe-Xe and
Ba-Ba are shown to have a well-realized fermion dynamical symmetry. Their low-lying energy levels can be
described by a unified analytical expression with two (three) adjustable
parameters for even--odd (even--even) nuclei that is derived from the fermion
dynamical symmetry model. Analytical expressions are given for wavefunctions
and for transition rates that agree well with data. The distinction
between the FDSM and IBM limits is discussed. The experimentally
observed suppression of the the energy levels with increasing quantum
number can be explained as a perturbation of the pairing interaction on
the symmetry, which leads to an Pairing effect for nuclei.Comment: submitted to Phys. Rev. C, LaTeX, 31 pages, 8 figures with postscript
files available on request at [email protected]
Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and their impacts on regional air quality
Greenhouse gas and air pollutant precursor emissions have been increasing rapidly in India. Large uncertainties exist in emissions inventories and quantification of their uncertainties is essential for better understanding of the linkages among emissions and air quality, climate, and health. We use Monte Carlo methods to assess the uncertainties of the existing carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emission estimates from four source sectors for India. We also assess differences in the existing emissions estimates within the nine subnational regions. We find large uncertainties, higher than the current estimates for all species other than CO, when all the existing emissions estimates are combined. We further assess the impact of these differences in emissions on air quality using a chemical transport model. More efforts are needed to constrain emissions, especially in the Indo-Gangetic Plain, where not only the emissions differences are high but also the simulated concentrations using different inventories. Our study highlights the importance of constraining SO2, NOx, and NH3 emissions for secondary PM concentrations
Sign reversal of the Hall resistance in the mixed-state of La CeCuO and LaCe(CuCo)O thin films
The transport properties of LaCeCuO(LCCO) and
LaCe(CuCo)O (LCCO:Co) superconducting
thin films are investigated. When the external field is applied along
the crystallographic c-axis, a double sign reversal of the Hall voltage in the
mixed state of LCCO:Co thin films is observed whereas a single sign reversal is
detected in LCCO. A double sign reversal of the Hall signal in LCCO can be
recovered if the magnetic field is tilted away from the plane of the film. We
find that the transition from one to two of the Hall sign reversal coincides
with the change in the pinning from strong to weak. This temperature/field
induced transition is caused either by the magnetic impurities in LCCO:Co or by
the coupling between the pancake vortices and the in-plane Josephson vortices
in LCCO. These results are in agreement with early theoretical and numerical
predictions.Comment: 6 pages, 4 figures, the proceedings of VORTEX VII in Physica
Coherent information analysis of quantum channels in simple quantum systems
The coherent information concept is used to analyze a variety of simple
quantum systems. Coherent information was calculated for the information decay
in a two-level atom in the presence of an external resonant field, for the
information exchange between two coupled two-level atoms, and for the
information transfer from a two-level atom to another atom and to a photon
field. The coherent information is shown to be equal to zero for all
full-measurement procedures, but it completely retains its original value for
quantum duplication. Transmission of information from one open subsystem to
another one in the entire closed system is analyzed to learn quantum
information about the forbidden atomic transition via a dipole active
transition of the same atom. It is argued that coherent information can be used
effectively to quantify the information channels in physical systems where
quantum coherence plays an important role.Comment: 24 pages, 7 figs; Final versiob after minor changes, title changed;
to be published in Phys. Rev. A, September 200
G\"{o}del black hole, closed timelike horizon, and the study of particle emissions
We show that a particle, with positive orbital angular momentum, following an
outgoing null/timelike geodesic, shall never reach the closed timelike horizon
(CTH) present in the -dimensional rotating G\"{o}del black hole
space-time. Therefore a large part of this space-time remains inaccessible to a
large class of geodesic observers, depending on the conserved quantities
associated with them. We discuss how this fact and the existence of the closed
timelike curves present in the asymptotic region make the quantum field
theoretic study of the Hawking radiation, where the asymptotic observer states
are a pre-requisite, unclear. However, the semiclassical approach provides an
alternative to verify the Smarr formula derived recently for the rotating
G\"{o}del black hole. We present a systematic analysis of particle emissions,
specifically for scalars, charged Dirac spinors and vectors, from this black
hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde
Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms
Experimental and numerical investigation of single-beam and pump-probe
interaction with a resonantly absorbing dense extended medium under strong and
weak field-matter coupling is presented. Significant probe beam amplification
and conical emission were observed. Under relatively weak pumping and high
medium density, when the condition of strong coupling between field and
resonant matter is fulfilled, the probe amplification spectrum has a form of
spectral doublet. Stronger pumping leads to the appearance of a single peak of
the probe beam amplification at the transition frequency. The greater probe
intensity results in an asymmetrical transmission spectrum with amplification
at the blue wing of the absorption line and attenuation at the red one. Under
high medium density, a broad band of amplification appears. Theoretical model
is based on the solution of the Maxwell-Bloch equations for a two-level system.
Different types of probe transmission spectra obtained are attributed to
complex dynamics of a coherent medium response to broadband polychromatic
radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in
Phys. Rev.
Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon
Considering gravitational and gauge anomalies at the horizon, a new method
that to derive Hawking radiations from black holes has been developed by
Wilczek et al. In this paper, we apply this method to non-rotating and rotating
Kaluza-Klein black holes with squashed horizon, respectively. For the rotating
case, we found that, after the dimensional reduction, an effective U(1) gauge
field is generated by an angular isometry. The results show that the gauge
current and energy-momentum tensor fluxes are exactly equivalent to Hawking
radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.
Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model
An analytical nonadiabatic approach has been developed to study the
dimerization gap and the optical absorption coefficient of the
Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum
phonons. By investigating quantitatively the effects of quantum phonon
fluctuations on the gap order and the optical responses in this system, we show
that the dimerization gap is much more reduced by the quantum lattice
fluctuations than the optical absorption coefficient is. The calculated optical
absorption coefficient and the density of states do not have the
inverse-square-root singularity, but have a peak above the gap edge and there
exist a significant tail below the peak. The peak of optical absorption
spectrum is not directly corresponding to the dimerized gap. Our results of the
optical absorption coefficient agree well with those of the experiments in both
the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR
- …