53 research outputs found

    Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling

    Full text link
    We study gravitational radiation reaction in the equations of motion for binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian gravity, or O(v/c)^2 beyond the leading radiation reaction effects for non-spinning bodies. We use expressions for the energy and angular momentum flux at infinity that include spin-orbit corrections, together with an assumption of energy and angular momentum balance, to derive equations of motion that are valid for general orbits and for a class of coordinate gauges. We show that the equations of motion are compatible with those derived earlier by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio

    Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment

    Get PDF
    We carry out a covariant calculation of the measurable relativistic effects in an orbiting gyroscope experiment. The experiment, currently known as Gravity Probe B, compares the spin directions of an array of spinning gyroscopes with the optical axis of a telescope, all housed in a spacecraft that rolls about the optical axis. The spacecraft is steered so that the telescope always points toward a known guide star. We calculate the variation in the spin directions relative to readout loops rigidly fixed in the spacecraft, and express the variations in terms of quantities that can be measured, to sufficient accuracy, using an Earth-centered coordinate system. The measurable effects include the aberration of starlight, the geodetic precession caused by space curvature, the frame-dragging effect caused by the rotation of the Earth and the deflection of light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.

    Gauge Theory and the Excision of Repulson Singularities

    Get PDF
    We study brane configurations that give rise to large-N gauge theories with eight supersymmetries and no hypermultiplets. These configurations include a variety of wrapped, fractional, and stretched branes or strings. The corresponding spacetime geometries which we study have a distinct kind of singularity known as a repulson. We find that this singularity is removed by a distinctive mechanism, leaving a smooth geometry with a core having an enhanced gauge symmetry. The spacetime geometry can be related to large-N Seiberg-Witten theory.Comment: 31 pages LaTeX, 2 figures (v3: references added

    de Sitter String Vacua from Supersymmetric D-terms

    Full text link
    We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane, which explicitly breaks supersymmetry. We accomplish the same goal by adding fluxes of gauge fields within the D7-branes, which induce a D-term potential in the effective 4D action. In this way we obtain dS space as a spontaneously broken vacuum from a purely supersymmetric 4D action. We argue that our approach can be directly extended to heterotic string vacua, with the dilaton potential obtained from a combination of gaugino condensation and the D-terms generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur

    The MERLIN Programme Part 4 The assembly of an instrumented electrically heated PWR 6x6 cluster for the thermal hydraulic series of tests

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:9091.9F(ND-R--1173(S)(pt.4)) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The MERLIN Programme Part 3; the development of an electrically heated PWR fuel rod simulator for the MERLIN rig (Bundle B)

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:9091.9F(ND-R--1173(S)(pt.3)) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Cellular resistance to mitomycin C is associated with overexpression of MDR-1 in a urothelial cancer cell line (MGH-U1)

    No full text
    Objective: to compare multidrug resistance (MDR)-1 and MDR-3 gene expression in a new urothelial cancer cell line (MGHU-1, with resistance to mitomycin C) against controls and the established (epirubicin-resistant) MDR clone, and to correlate MDR with cytotoxicity data.Materials and methods: resistance to mitomycin C was induced by the long-term exposure of wild-type MGHU-1 cells to increasing concentrations (20–400 nmol/L) of mitomycin C. The cytotoxicity of mitomycin C or epirubicin was then compared in MGHU-1, MGHU-MMC (mitomycin C-resistant) and MGHU-1R (established MDR) cells, using the tetrazolium biomass assay. The expression of MDR-1 and -3 was investigated by the reverse transcriptase-polymerase chain reaction, using cDNA-specific primers after titration, and compared with DNA and negative controls.Results: MDR-1 and -3 were significantly and equally overexpressed in MGHU-1R, and associated with a dramatic increase in the 50% inhibitory drug concentration (P < 0.001) for mitomycin C and epirubicin against controls. In MGHU-MMC, the overexpression of MDR-1 was three times greater than that of MDR-3. The cytotoxicity profile for both agents was very similar to that of MGHU-1R. Trace amounts of MDR-1, but not MDR-3, were identified in the MGHU-1 wild-type.Conclusions: Urothelial cancer cell resistance to mitomycin C is associated with cross-resistance to epirubicin and overexpression of MDR-1, suggesting that mitomycin C falls within the MDR category. Clinical application of this methodology may allow patients to be identified who are unlikely to benefit from intravesical chemotherapy
    • …
    corecore