1,836 research outputs found

    Two-Dimensional Diffusion in the Presence of Topological Disorder

    Full text link
    How topological defects affect the dynamics of particles hopping between lattice sites of a distorted, two-dimensional crystal is addressed. Perturbation theory and numerical simulations show that weak, short-ranged topological disorder leads to a finite reduction of the diffusion coefficient. Renormalization group theory and numerical simulations suggest that longer-ranged disorder, such as that from randomly placed dislocations or random disclinations with no net disclinicity, leads to subdiffusion at long times.Comment: 10 pages, 6 figure

    Transparency in the Paris Agreement

    Get PDF
    Establishing a credible and effective transparency system will be both crucial and challenging for the climate regime based on the pledge and review process established in the Paris Agreement. The Agreement provides for review of achievements under national pledges (Nationally Determined Contributions, or NDCs), but much of this information will become available only well after key steps in the launch of this latest attempt to control human influence on the climate. Still, in these early years, information and understanding of individual and collective performance, and of relative national burdens under the NDCs, will play an important role in the success or failure of the Agreement. However, because of the phasing of various steps in the 5-year cycles under the Agreement and the unavoidable delays of two or more years to produce and review government reports, the Climate Convention and other intergovernmental institutions are ill-suited to carry out timely analyses of progress. Consequently, in advance of formal procedures, academic and other non-governmental groups are going to provide analyses based on available data and their own methodologies. We explore this transparency challenge, using the MIT Economic Projection and Policy Analysis (EPPA) model, to construct sample analyses, and consider ways that efforts outside official channels can make an effective contribution to the success of the Agreement.We gratefully acknowledge the financial support for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial and foundation sponsors and Federal awards, including the U.S. Department of Energy, Office of Science under DE-FG02-94ER61937 and the U.S. Environmental Protection Agency under XA-83600001-1. For a complete list of sponsors and the U.S. government funding sources, please visit http://globalchange.mit.edu/sponsors/all

    Surface moisture increases microcracking and water vapour permeance of apple fruit skin

    Get PDF
    Surface moisture induces microcracking in the cuticle of fruit skins. Our objective was to study the effects of surface moisture on cuticular microcracking, the permeance to water vapour and russeting in developing ‘Pinova’ apple fruit. Surface moisture was applied by fixing to the fruit a plastic tube containing deionized water. Microcracking was quantified by fluorescence microscopy and image analysis following infiltration with acridine orange. Water vapour permeance was determined gravimetrically using skin segments (ES) mounted in diffusion cells. Cumulative water loss through the ES increased linearly with time. Throughout development, surface moisture significantly increased skin permeance. The effect was largest during early development and decreased towards maturity. Recovery time courses revealed that following moisture treatment of young fruit for 12 days, skin permeance continued to increase until about 14 days after terminating the moisture treatment. Thereafter, skin permeance decreased over the next 28 days, then approaching the control level. This behaviour indicates gradual healing of the impaired cuticular barrier. Nevertheless, permeance still remained significantly higher compared with the untreated control. Similar patterns of permeance change were observed following moisture treatments at later stages of development. The early moisture treatment beginning at 23 DAFB resulted in russeting of the exposed surfaces. There was no russet in control fruit without a tube or in control fruit with a tube mounted for 12 days without water. The data demonstrate that surface moisture increases microcracking and water vapour permeance. This may lead to the formation of a periderm and, hence, a russeted fruit surface

    Controlling the direction, topological charge, and spectrum of transition radiation with holographic metasurfaces

    No full text
    We show experimentally that wavefront - the direction, spectral composition and phase profile of light emission - stimulated by free electron injection into plasmonic and dielectric media can be controlled with high finesse using holographic nanostructures

    An NMR study on internal browning in pears

    Get PDF
    Internal browning in pears (Pyrus communis L. cv. Blanquilla) has been studied by NMR and MRI in order to develop a non-destructive procedure for on-line disorder identification. For NMR relaxometry, disordered tissue shows higher transverse relaxation rates compared to sound tissue, especially at higher magnetic field strength and for long pulse spacing. Membrane alteration and therefore tissue disintegration, as well as water evaporation, appear to be the main causes of this response. Correlation between relaxation times and diffusion showed that the proton pools in disordered tissue are grouped into a smaller number of populations compared to sound tissue, also highlighting cell decompartmentation in disordered tissue. At a macroscopic level, fast low angle shot MR images, effective transverse relaxation-weighted (TR 11 ms and TE 3.7 ms) and proton density-weighted (TR 7.6 ms and TE 2.5 ms), were acquired for pears at a rate of 54 mm/s. Images have been discriminated for internal breakdown according to histogram characteristics. Up to 94 and 96% of pears, respectively, were correctly classified in the former and the latter type of images. In this study a minimum value of 12% of tissue affected by breakdown was always clearly identifie

    Long Range Hops and the Pair Annihilation Reaction A+A->0: Renormalization Group and Simulation

    Full text link
    A simple example of a non-equilibrium system for which fluctuations are important is a system of particles which diffuse and may annihilate in pairs on contact. The renormalization group can be used to calculate the time dependence of the density of particles, and provides both an exact value for the exponent governing the decay of particles and an epsilon-expansion for the amplitude of this power law. When the diffusion is anomalous, as when the particles perform Levy flights, the critical dimension depends continuously on the control parameter for the Levy distribution. The epsilon-expansion can then become an expansion in a small parameter. We present a renormalization group calculation and compare these results with those of a simulation.Comment: As-published version; two significant errors fixed, two references adde

    Reaction, Levy Flights, and Quenched Disorder

    Full text link
    We consider the A + A --> emptyset reaction, where the transport of the particles is given by Levy flights in a quenched random potential. With a common literature model of the disorder, the random potential can only increase the rate of reaction. With a model of the disorder that obeys detailed balance, however, the rate of reaction initially increases and then decreases as a function of the disorder strength. The physical behavior obtained with this second model is in accord with that for reactive turbulent flow, indicating that Levy flight statistics can model aspects of turbulent fluid transport.Comment: 6 pages, 5 pages. Phys. Rev. E. 65 (2002) 011109--1-

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE

    The Spectrum of the Dirac Operator on Coset Spaces with Homogeneous Gauge Fields

    Get PDF
    The spectrum and degeneracies of the Dirac operator are analysed on compact coset spaces when there is a non-zero homogeneous background gauge field which is compatible with the symmetries of the space, in particular when the gauge field is derived from the spin-connection. It is shown how the degeneracy of the lowest Landau level in the recently proposed higher dimensional quantum Hall effect is related to the Atiyah-Singer index theorem for the Dirac operator on a compact coset space.Comment: 25 pages, typeset in LaTeX, uses youngtab.st
    corecore