
1 
 

Gas permeation through single-crystal ZIF-8 membranes 

Chen Chen1, Aydin Ozcan2, A. Ozgur Yazaydin2, and Bradley P. Ladewig1,3* 

1Barrer Centre, Department of Chemical Engineering, Imperial College London, SW7 

2AZ, United Kingdom 

2Department of Chemical Engineering, University College London, WC1E 7JE, United 

Kingdom 

3Institute for Micro Process Engineering, Karlsruhe Institute of Technology, Hermann-von-

Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany 

*e-mail: b.ladewig@imperial.ac.uk 

 

Abstract 

Grain boundaries are an unavoidable microstructural feature in intergrown polycrystalline 

metal-organic framework (MOF) membranes. They have been suspected to be less size-

selective than a MOF’s micropores, resulting in suboptimal separation performances – a 

speculation recently confirmed by transmission electron microscopy of MOF ZIF-8. Single-

crystal membranes, without grain boundaries, should confine mass transport to micropores 

and reflect the intrinsic selectivity of the porous material. Here, we demonstrate the feasibility 

of fabricating single-crystal MOF membranes and directly measuring gas permeability 

through such a membrane using ZIF-8 as an exemplary MOF. Our single-crystal ZIF-8 

membranes achieved ideal selectivities up to 28.9, 10.0, 40.1 and 3.6 for gas pairs CO2/N2, 

CO2/CH4, He/CH4 and CH4/N2 respectively, much higher than or reversely selective to over 

20 polycrystalline ZIF-8 membranes, unequivocally proving the non-selectivity of grain 

boundaries. The permeability trend obtained in single-crystal membranes aligned with a 

force field that had been validated against multiple empirical adsorption isotherms. 
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1. Introduction 

Metal-organic frameworks (MOFs) are commonly defined as potentially porous coordination 

polymers made of metal nodes and organic ligands extending in two or three dimensions [1]. 

Reticular syntheses [2] afforded MOFs a wide range of tailorable pore apertures from 3.0 Å 

in ZIF-11 [3] to 98 Å in IRMOF-74-XI [4], corresponding to diverse molecular sizes from 

those of small gases (e.g. hydrogen) to natural proteins. Post-synthetic modifications can 

usually alter the reactivity of a MOF through its linkers [5]. These two developments have 

made MOFs strong contenders in adsorption- and membrane-based separations [6, 7]. In 

the domain of membrane-based gas separations, MOFs are typically used as either the 

selective layer in polycrystalline pure-MOF membranes [8], or the stability- and permeability-

enhancing filler in mixed-matrix membranes (MMMs) [7, 9]; a few MOFs even 

simultaneously increase permeability and selectivity of MMMs [10, 11].  

 

From a design point of view, polycrystalline pure-MOF membranes are theoretically 

advantageous over MMMs because a pure-MOF membrane’s selectivity should be 

predictable – close to the optimal, molecular-sieving selectivity of the MOF’s pore aperture 

size [7] – as long as the membrane is properly intergrown and crack-free. Many endeavours 

have been dedicated to fabricating a crack-free polycrystalline MOF membrane over a 

substrate by optimising a) chemistry of the precursor solutions [12], b) chemistry of the 

substrate [13, 14], c) membrane growth method or set-up [15-17], or d) a combination of the 

aforementioned three [18, 19]. One of such well-engineered polycrystalline ZIF-8 (Zn(MeIM)2, 

MeIM = 2-methylimidazole) membranes used the pore aperture of ZIF-8 (3.4 Å) to score an 

exceptional separation factor of 105 for propene (kinetic diameter: 4.0 Å) over propane 

(kinetic diameter: 4.3 Å) [12]. 

 

Despite these remarkable developments, polycrystalline membranes, by their very nature, 

always contain grain boundaries that have been suspected to be non-size-selective thus 

undermining separation performances [6, 20-23] (Fig. 1). A recent breakthrough in 
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transmission electron microscopy (TEM) imaging by Zhu et al revealed for the first time the 

grain boundary structure in a MOF [24]. They recreated the self-assembly process of the 

interface between two ZIF-8 crystals joint via the (110) plane by molecular dynamics 

simulation, Two of the three interconnected channels at the grain boundary (~8.2 Å and ~3.8 

Å in diameter) were larger than the six-membered-ring channels (3.4 Å in diameter) of ZIF-8; 

self- and transport-diffusivities of guest molecules were higher in samples with grain 

boundaries.  

 

Fig. 1. A schematic diagram showing the possible grain boundary structure in a 

polycrystalline ZIF-8 membrane. A molecule, such as propane, that is too large to go through 

the six-membered-ring channel of ZIF-8 may be able to permeate through the larger grain 

boundary structure (red dotted rectangle). 

 

Macroporous ceramic support

Polycrystalline ZIF-8 coating

Crystal grain 
boundary
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Single-crystal membranes (SCMs) are widely recognised as the ideal tool to study a 

material’s intrinsic permeation selectivities [6, 20, 21, 25], and are the assumed model in 

computational predictions of MOF-membranes’ separation performances [26-28]. Single 

crystals have proved useful for studying intrinsic diffusion properties – infra-red imaging 

monitored the CO2 uptake and revealed the concentration evolution within a ZIF-8 crystal [29] 

and at the crystal-polymer interface [30]. However, there are very limited attempts at using 

single crystals in a membrane configuration to investigate the intrinsic permeation properties 

because of lack of practical applications of these membranes [31] and fabrication difficulties 

[32, 33]. Since single-crystal zeolite membranes fabricated more than three decades ago [32, 

34, 35], only one one-dimensional coordination polymer (i.e. by definition, not a MOF [1]) 

[Cu2(bza)4(pyz)]n (bza = benzoate; pyz = pyrazine)[21] and its analogues [36, 37] have been 

made into SCMs. There was, regrettably, no comparison between these SCMs and 

polycrystalline membranes of the same materials in terms of permeance or selectivity. In our 

proof-of-concept study of gas permeation through a single-crystal MOF membrane, ZIF-8 

was chosen as a representative material because of the readily available data on ceramic-

supported polycrystalline ZIF-8 membranes for comparison.  

 

A large crystal is a prerequisite for single-crystal membranes for practical reasons – it would 

be prohibitively difficult to manually pick up and orient the crystal in the subsequent stage of 

membrane fabrication. Based on our experience, crystals of at least 100 micrometres are 

worth being considered for further processing. In order for the downstream pressure to be 

measured with better accuracy, we needed crystals of a few hundred micrometres – a 

demanding size as most crystallisation studies aimed to make nanosized crystals [38]; this is 

also pushing the upper limit of ZIF-8 size reported to date (around 300 µm) – first 

synthesised by Chmelik et al [39] and reproduced or adapted in many other studies [31, 40-

45]. Crystal growth is a highly complex and intractable process [46]. It is impossible and 

beyond the capacity of this work to predict a complete set of parameters that will guarantee 
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the unusually large crystals; instead, we built upon methods that have produced the largest 

ZIF-8 crystals reported. 

 

Here we report permeabilities of light gases (helium, carbon dioxide, nitrogen and methane) 

through a single-crystal membrane of ZIF-8, and compare the single-crystal ideal 

selectivities with polycrystalline ZIF-8 membranes. These light gases constitute industrially 

relevant separations. Carbon dioxide and nitrogen are the main impurities in natural gas [47], 

which is also an important source of the increasingly demanded helium [26, 48]. Separating 

CO2 from N2, the largest component of flue gas, is essential to curbing CO2 emission [49]. To 

the best of our knowledge, this is the first direct measurement of gas permeation through a 

single-crystal MOF membrane. Without interference from non-selective grain boundaries or 

inter-crystalline defects, the single-crystal ideal selectivities can be considered intrinsic to 

ZIF-8 as permeation occurs through micropores only. We believe that intrinsic selectivities 

are of great interest to the microporous membrane community as these values could provide 

a benchmark for polycrystalline ZIF-8 membranes’ performance. 

 

2. Experimental 

2.1. Synthesis of ZIF-8 (Optimised protocol) 

1.764 g (5.93 mmol) of zinc nitrate hexahydrate (≥98%, Sigma-Aldrich) was dissolved in 15 

ml of methanol (≥99.8% HiPerSolv CHROMANORM® grade, VWR UK). 0.9739 g (11.86 

mmol) of 2-methylimidazole (99%, Sigma-Aldrich) and 0.4034 g (5.93 mmol) of sodium 

formate (99%, Sigma-Aldrich) were dissolved in 25 ml of methanol. The two solutions were 

combined and mixed briefly for 5 minutes on a stirring plate. Meanwhile, 3 new 20-ml crimp-

cap glass vials (Kinesis UK) were rinsed with methanol and set aside with their caps loosely 

placed over them to prevent dust or any particulates from entering the vials. 13 ml of the 

combined precursor solution was drawn by a syringe and passed to each glass vial through 

a 0.2-µm polytetrafluoroethylene (PTFE) syringe filter (VWR UK). The vials were sealed by a 

manual crimper (Kinesis UK) and placed in a 90-°C oven for 24 hours. The vials were left to 
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cool naturally in the oven until they were safe to touch. Large crystals on the wall of vials (Fig. 

S7) were carefully picked up by PTFE tweezers with fine, pointed ends and released into a 

small snap-cap vial of fresh methanol.  Both the manually selected crystals and the leftover 

crystals were soaked in fresh methanol replaced every 24 hours for 2 days – the extensive 

solvent exchange was to increase the chance of removing unreacted precursor chemicals. 

The crystals were dried in a vacuum oven at 25 °C for 6 hours. The manually selected 

crystals were inspected under an optical microscope. Single, visually defect- and crack-free 

crystals with the characteristic dodecahedron shape of ZIF-8 were kept for membrane 

fabrication and single-crystal XRD. The leftover crystals were kept in another container for 

powder XRD, nitrogen adsorption and other characterisation studies. 

 

2.2. PXRD studies 

Powder X-ray diffraction spectra were collected by an PANalytical X’Pert Pro diffractometer 

with a CuKα X-ray source (40 kV, 20 mA) and a reflection-transmission spinner sample 

stage at ambient conditions. Large crystals were ground before pressed onto the sample 

holder to obtain a flat surface. 

 

2.3. Nitrogen sorption 

Nitrogen sorption measurement was performed on a Micromeritics 3Flex volumetric 

instrument at 77 K. The sample was evacuated at 100 °C under vacuum overnight, followed 

by 2 hours of in situ degassing at 100 °C under vacuum prior to the start of nitrogen sorption 

analysis. BET surface area was estimated from the quantities adsorbed at relative pressures 

between 0.045 and 0.299. 

 

2.4. Construction of single-crystal membranes 

We adapted the single-crystal zeolite membrane model designed by Geus et al [35] because 

of its simplicity and compatibility with a commercially available membrane holder (Merck 

Millipore, XX4404700). Steel plates (47 mm in diameter, 0.37 mm in thickness) with a 400-
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µm-diameter hole drilled in the centre were made in-house and cleaned with acetone. The 

construction was carried out under an optical microscope. Epoxy (Araldite, rapid 2-

component epoxy) was spread around the hole and pushed to the rim of the hole as closely 

as possible without going over the rim. Five minutes later, a ZIF-8 crystal, held by high-

precision plastic tweezers (ideal-tek, 707A.DG), was placed over the epoxy with its large flat 

base parallel to the steel plate, and secured in place by a gentle push. We allowed the first 

layer of epoxy to partially set so that it would not overflow the rim of the hole and cover the 

bottom of the crystal. A fresh batch of epoxy was made and spread around the crystal to 

ensure a gas-tight seal. The membrane assembly was left at ambient conditions overnight 

for the epoxy to cure. 

 

2.5. Gas permeation measurements 

The constant-volume, pressure-rise apparatus (Fig. S5) was used to measure gas 

permeation. After the membrane was placed in the permeation cell and sealed by a Viton O-

ring, each segment of the rig was evacuated for 5 to 30 minutes depending on the size of the 

segment. Gas was introduced to the upstream tank until the pressure stabilised at around 

2.1 bar absolute (or 31 psia). The system was left in this state for 2 days, which we observed 

was enough for the downstream air ingress to reach a steady-state, whilst the pressure 

gauges 1 and 2 (Fig. S5) were recording continuously. The valve V-2 was then opened; the 

upstream and downstream pressures were recorded for another 2 days. 

 

3. Results 

3.1. Synthesis of large, single crystals of ZIF-8 

The plethora of chemical and process variables used to synthesise the same MOF makes it 

challenging to systemically and extensively investigate crystallisation processes. For 

example, ZIF-8 have been made from various Zn2+ salts (nitrate, acetate, sulfate, chloride, 

bromide, iodide, perchlorate etc) [12, 50, 51], with or without [52, 53] a modulator, in different 

solvents (water, alcohols, dimethylformamide, dimethyl sulfoxide, acetone etc) [52-54] with 
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different molar ratios of reactants at a range of temperatures [55]. To further complicate the 

matter, the variables may not be independent from each other – one could behave differently 

when combined with different sets of other variables. For example, sodium formate, a 

common modulator in ZIF-8 syntheses, was observed to accelerate nucleation and result in 

smaller ZIF-8 crystals in a solvothermal synthesis [41]; the same modulator served the 

opposite purpose (i.e. slowing down nucleation and facilitating the formation of bigger ZIF-8 

crystals) in an ambient-condition synthesis with stirring [40]. Some studies have tried to 

control the crystal size of ZIF-8 by adjusting a few variables [50, 56]; however, the large 

array of variables means our understanding of crystal size engineering is merely fragments 

of the whole picture. In view of these challenges, it is more realistic to fine-tune existing 

protocols than designing the optimal one ab initio. 

 

On the basis of the largest-to-date ZIF-8 [31, 39], we formulated a reproducible synthesis 

protocol that made large single crystals of ZIF-8 up to 1 mm (Fig. 2a). Most of the crystals 

that appeared to be single, crack-free under the microscope were above 500 µm (Fig. S2a). 

The optimal protocol was finalised after varying the zinc salt, synthesis temperature and the 

modulator concentration (Supplementary Information 1.1); the observations did not always 

agree with what previous studies suggested, highlighting limitations of the current knowledge 

of crystal size engineering. For example, we consistently obtained larger crystals from zinc 

nitrate than from zinc chloride, whilst the opposite was reported in the literature [12, 50]. Also, 

we postulated that two opposing roles – deprotonation agent and competitive ligand – of the 

modulator were present instead of just one (Supplementary Information 1.1). Connecting the 

fragments of existing insights to form the complete picture of ZIF-8 size control is well 

beyond the capacity of this work; nonetheless, we found that a few simple steps of removing 

undesired nucleation sites (filtering the precursor solution, using high-purity solvent and 

rinsing new glass vials with high-purity solvent) helped achieve bigger crystals than the 

original methods [31, 39] and ensure the reproducibility of our protocol.  
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Fig. 2. (a) A micrograph of a millimetre-sized single crystal ZIF-8 viewed along [110] axis. (b) 

Powder X-ray diffraction (PXRD) pattern of two batches of ZIF-8 from which large, single 

crystals were selected to make membranes. The two batches were made with the same 

conditions (in methanol at 90 °C for 24 hours, i.e. the optimised protocol in Section 2.1). 

After large, single crystals were isolated, the remaining product was used for PXRD. The 

simulated pattern was from Park et al [3].  

 

Single-crystal X-ray diffraction (Table S3) and powder X-ray diffraction spectra (Fig. 2b) were 

collected to confirm that the product was indeed high-quality ZIF-8. A Type 1 adsorption 

isotherm characteristic of microporous materials [57] was obtained from nitrogen sorption at 

77 K (Fig. S1), from which the Brunauer–Emmett–Teller surface area was calculated to be 

1,490 m2 g-1, within the range of literature values from 960 to 1,918 m2 g-1 compiled by 

Huang et al [58].  

 

3.2. Single-crystal membrane fabrication 

In order to test gas permeation through a SCM in a commercially available permeation test 

cell (Merck Millipore, XX4404700), we glued the selected single crystal to a steel plate (47 

mm in diameter, 0.37 mm in thickness) with a 400-µm-diameter hole drilled in the centre. 

Two single-crystal ZIF-8 membranes, ZIF8-SCM-1 and ZIF8-SCM-2 (Figs. 3a and 3b) 

containing single crystals ZIF8-1 and ZIF8-2 respectively, were fabricated and tested. ZIF8-1 
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and ZIF8-2 were perfect-looking single crystals of ZIF-8 selected from two identical 

syntheses detailed in Methods.  

 

Although ZIF-8 is isotropic and has identical six-membered channels along the [111] 

direction, it has another set of inaccessible four-membered channels in the [100] direction 

[18, 59]. Therefore, having the pressure gradient in the [111] direction makes the ideal 

orientation; and [100] direction, the most unfavourable because of a more torturous 

permeation path. We did not engineer the growth direction of ZIF-8 crystals. Serendipitously, 

most of the single crystals harvested from the wall of a glass vial grew along similar 

directions – somewhat between [111] and [110] – as seen by comparing the Figs. 3a and 3b 

with Fig. S4. Conveniently, they were ‘half crystals’ – half of a whole rhombic dodecahedron 

– with a large, flat surface (Fig. 3b inset) originally in contact with the wall. This large, flat 

surface became the base parallel to the steel plate and perpendicular to the pressure 

gradient direction (Fig. 3c). Therefore, harvesting single crystals from the wall of glass vials 

proved beneficial in two ways – a) it reduced the chance of picking up intergrown crystals, 

and b) it helped ensure a rather consistent orientation of the embedded crystal in the 

membrane assembly.  
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Fig. 3. (a) Micrographs of the top and bottom views of ZIF8-SCM-1. (b) Micrographs of the 

top and bottom views of ZIF8-SCM-2, inset: the crystal that was embedded in ZIF8-SCM-2. 
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(c) A schematic side-view of the single-crystal membrane assembly. 

 

Our SCM assembly has its limitations. Firstly, the embedded crystal does not have a set of 

parallel surfaces (Fig. 3c), resulting in uneven thickness – the average thickness was used in 

permeability calculations. There are errors associated with averaging and even the method 

of using the average thickness (Supplementary Information 1.4.4); however, they will not 

affect the ideal selectivities of each membrane because when taking the ratio of two 

permeabilities, the thickness term disappears (Supplementary information 1.4.1). Secondly, 

the thickness far exceeds what is conventionally acceptable for a membrane. This is the side 

effect of using a large ZIF-8 crystal as the crystal grows in all three dimensions. We decided 

not to polish the brittle crystal to protect its integrity. Future work may consider polishing 

methods that do not damage the crystal, or using MOFs that naturally have a plate-like 

morphology. Lastly, the extremely small permeation area (i.e. the area of the hole on the 

steel plate) presents a challenge to the downstream pressure measurement. We kept the 

downstream volume of the rig (Fig. S5) is kept to the minimum – just the internal volume of 

the necessary tubing – so that the pressure transducer can pick up any change caused by 

the small amount of permeate.  

 

3.3. Single-gas permeation and ideal selectivities 

Single-gas permeabilities of both single-crystal membranes agree with the trend reported by 

other ZIF-8 membranes – permeability is generally inversely proportional to the kinetic 

diameter of the permeant, and framework flexibility [31, 60] allows transport of molecules 

larger than the aperture size (Table S1 and Fig. S6). We compared our SCMs’ ideal 

selectivities of four industrially important separations (CO2/N2, CO2/CH4, He/CH4 and CH4/N2) 

with over 20 polycrystalline ZIF-8 membranes that measured single-gas permeation of 

common small gases at room temperature (Fig. 4 and Table S2). Some polycrystalline ZIF-8 

membranes such as the those reported by Brown et al [61] and Marti et al [62] were not 

included in the comparison because the Torlon polymer substrate showed an ideal CO2/N2 
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selectivity of 0.90 [63] – higher than the Knudsen value of 0.8. The macroporous substrate 

might have affected permeation through adsorption.  

 

Despite the disparity in our two SCMs’ ideal selectivities, they are almost always well above 

the Knudsen selectivities and polycrystalline ZIF-8 membranes’ selectivities for all four gas 

pairs. Most of the polycrystalline selectivities do not reflect a remarkable improvement from – 

some were even below – Knudsen selectivities, suggesting that the molecular sieving 

potential of ZIF-8 was not fully achieved in those membranes. Interestingly, both SCMs were 

CH4-selective whereas most polycrystalline ZIF-8 membranes had ideal CH4/N2 selectivities 

fluctuating around unity, showing no selectivity or marginal N2-selectivity (Fig. 4d). Two 

membranes [64, 65] showed superior or similar CO2/CH4 selectivity to ours (Fig. 4b), but 

neither membrane could match our results in other gas pairs. Thus, their exceptional 

CO2/CH4 selectivities should not be generalised to indicate superior membrane performance. 

 



14 
 

Fig. 4. Single-crystal ZIF-8 membranes’ ideal separation performance in (a) CO2/N2, (b) 

CO2/CH4, (c) He/CH4, and (d) CH4/N2 at room temperature (20 – 25 °C). The ideal 

selectivities are compared with polycrystalline ZIF-8 membranes (Table S2) and Knudsen 

selectivity. Knudsen selectivity is commonly used to benchmark a membrane’s performance 

– molecular sieving if membrane’s selectivity is above the Knudsen selectivity; containing 

pinholes or mesopores otherwise. There are fewer literature values available for helium as it 

has not been as extensively tested as other small gases. The effective/average thicknesses 

of ZIF8-SCM-1 and ZIF8-SCM-2 were around 382 µm and 292 µm respectively. The method 

of calculating the average thickness is explained in Supplementary Information 1.4.4 and Fig. 

S10. 

  

Unlike polycrystalline ZIF-8 membranes that are mostly non-selective or N2-selective over 

CH4 (Fig. 4d), our SCMs showed reverse selectivity for CH4 over N2. Experimental single-

component adsorption isotherms at 25 – 30 °C revealed that ZIF-8’s uptake of CH4 almost 

double that of N2 between 0 and 1 bar [66], i.e. the adsorptive CH4/N2 selectivity is around 2. 

The linear isotherms suggest that we can expect the adsorptive selectivity to continue being 

2 at our upstream pressure of 2 bar. On the other hand, the small difference in the two 

molecules kinetic diameters (N2: 3.64 Å, CH4: 3.8 Å), coupled with ZIF-8 framework flexibility, 

means the diffusive selectivity of N2 over CH4 should be marginal. Indeed, the ratio of total 

diffusion coefficients N2/CH4 in ZIF-8 was predicted to be 1.38 computationally by Battisti et 

al [67], giving a diffusive CH4/N2 selectivity of 1/1.38 = 0.724. The adsorption-diffusion model 

suggests that the permeability (or membrane) selectivity is approximately the product of 

adsorptive and diffusive selectivities [68, 69], the permeability selectivity should therefore be 

approximately 2 × 0.724 = 1.45, making ZIF-8 CH4-selective over N2, in line with our SCMs’ 

performances. 

 

We also compared our ideal selectivities with four sets of in silico results based on four 

widely used flexible force fields [70-74] for molecular simulations of ZIF-8 (Supplementary 
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Information 1.5). Helium was not modelled because of its nearly non-adsorbing nature at 

room temperature. We believe the force field proposed by Wu et al [71] is more accurate 

than the other three because it was validated against the experimental adsorption isotherms 

of N2, CO2 and CH4 at 298 K whereas others were only compared with one of the gases. The 

ideal selectivities obtained from Wu et al’s force field (Table S7) agree with our permeability 

trend of CO2 > CH4 > N2 (Table S1) – an additional validation of their force field. The grain 

boundary structure may provide an explanation on why polycrystalline ZIF-8 membranes 

tend to be N2 selective over CH4. There is an extra layer of the 2-methylimidazolate ligands 

at the grain boundary [24] which are the binding sites for N2 [72]. Therefore, with additional 

imidazolate rings at grain boundaries, a polycrystalline membrane may have higher N2 

adsorption capacity than that in a single crystal, giving a lower and even reverse CH4/N2 

membrane selectivity.  

 

We do not know with absolute certainty what caused the disparities in the two SCMs’ 

selectivities. The disparity is larger when the gas pair involves a slow-permeating gas such 

as N2 and CH4. A small quantity of ingress air could not be avoided during the extended test 

period – a method to correct for this is described in the Supplementary Information 1.3. As 

only a small amount of N2 or CH4 will accumulate in the downstream over the duration of a 

measurement, it is much more crucial to account for air ingress when testing N2 and CH4 

than a fast-permeating species like He. Our method of background subtraction may not be 

robust enough for N2 and CH4; a high-vacuum set-up in the downstream or a sweep gas in 

conjunction with a gas chromatography may improve the consistency across different 

membranes. Having said that, we are aware that it is common to observe nonuniformity 

among single crystals because of variations in crystal quality [34].   

 

4. Discussion 

Our work is a proof of concept that direct measurements of gas permeabilities through a 

single-crystal MOF membrane can be achieved. More importantly, it provided like-for-like 
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comparisons between polycrystalline and single-crystal MOF selectivities. The postulation 

that a single-crystal zeolite membrane may have higher separation factors than the 

polycrystalline version is not new [32]; however, there was no direct comparison in any 

SCMs [21, 32, 34, 35] prior to our work. Such comparison was either not part of the 

objectives of those studies, or unachievable due to the lack of polycrystalline membranes or 

the lack of data under similar test conditions. By choosing an extensively studied MOF ZIF-8, 

we showed that by eliminating grain boundaries and constraining gas transport to 

intracrystalline pores, single-crystal ZIF-8 offered consistently higher ideal selectivities than 

polycrystalline ZIF-8 membranes for all gas pairs of interest. 

 

This implies that grain boundaries indeed provide a less-selective route than ZIF-8’s 6-

membered-ring channels. With better-engineered synthetic protocols, it is possible to 

fabricate intergrown, macroscopic-defect-free polycrystalline membranes; but the corollary of 

a polycrystalline membrane is the presence of grain boundaries. Our results corroborated 

Zhu et al’s conclusion from molecular dynamics simulations of small gases and kinetic 

vapour adsorption of toluene and 1,3,5-trimethylbenzene in ZIF-8 structures with and without 

interfacial structures – that the larger interfacial openings in ZIF-8 increase the transport 

diffusivities of guest molecules. The discovery that larger molecules’ mass transport is 

increased by a greater extent [24] means the diffusive selectivity Di/Dj where D is diffusion 

coefficient, i is the smaller molecule and j the larger, is reduced by grain boundaries. Since 

permeability selectivity is the product of adsorptive and diffusive selectivities, polycrystalline 

ZIF-8 membranes will exhibit lower permeability selectivity than a SCM. 

 

5. Conclusions  

We measured single-gas permeabilities of He, CO2, N2 and CH4 through two single-crystal 

ZIF-8 membranes and obtained ideal selectivities that are intrinsic to the chemistry and 

porous structure of ZIF-8 in the absence of other transport routes such as less selective 

grain boundaries. Our single-crystal membranes displayed consistently higher ideal CO2/N2, 



17 
 

CO2/CH4 and He/CH4 selectivities of than an overwhelming majority of ceramic-supported 

polycrystalline membranes reported in the literature, and reverse CH4/N2 selectivity 

compared with most polycrystalline membranes. The reverse CH4/N2 selectivity was 

supported by simulation and could be explained by the extra imidazole rings, where N2 

interacts with strongly, at grain boundaries. It is not our slightest intention to trivialise the 

breakthroughs in the field of polycrystalline membranes; they are, after all, a beacon of hope 

for the commercialisation of MOF membranes. What we want to demonstrate through our 

work is that grain boundaries in ZIF-8 contribute to mass transport and reduce ideal 

selectivity. With the accuracy of single-crystal membrane measurements improved in the 

future, they could provide useful empirical results for validation of new force fields. 
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1. Supplementary text 

1.1. Variations in ZIF-8 synthesis protocol 

1.1.1. Zinc chloride as the zinc source 

We replaced zinc nitrate hexahydrate with the same molar amount of zinc chloride (≥ 98%, 

Sigma-Aldrich), that is, 5.93 mmol or 0.808 g of zinc chloride, whilst keeping everything else 

the same as described in the Method section of the main manuscript. There was no isolated, 

large crystal on the wall of glass vials; many smaller crystals were rather evenly distributed 

all over the wall, with the bulk of the product at the bottom. We could not see particularly 

large single crystals when examining the product under an optical microscope. As seen on 

the micrograph (Fig. S2), most of the ZIF-8 crystals made from zinc chloride are in the range 

of 50 – 100 µm. The absence of large crystals and the generally smaller crystal sizes than 

those made from zinc nitrate hexahydrate did not agree the observations in other methanol-

based solvothermal or room-temperature syntheses of ZIF-8 [1, 2] where the authors 

suggested that nitrate, being a more reactive salt than chloride, led to a faster coordination 

reaction between zinc ions and ligands (i.e. faster nucleation) and smaller crystals.  

 

1.1.2. Synthesis various amounts of modulator 

Apart from the optimised protocol where the molar ratios of Zn:MeIM:formate:methanol = 

1:2:1:167, we attempted syntheses with molar ratios of 1:2:0:167, 1:2:0.5:167 and 1:2:2:167 

whilst keeping everything else the same as described in the Method section of the main 

manuscript. Without sodium formate, the precursor solution remained clear and no product 

was formed even after a week. The same was observed in an unmodulated synthesis using 

zinc chloride as the zinc source.  

 

When using the molar ratio of Zn:MeIM:formate:methanol = 1:2:0.5:167, the precursor 

solution remained clear after 24 hours; the final product was harvested at the 43rd hour mark. 

Most of the crystals were too small for our microscope to resolve; a few larger crystals 
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between 100 and 200 µm were also observed (Fig. S2c). On the other hand, with more 

formate than in the optimised protocol, product was formed after 24 hours (Fig. S2d) but 

appeared much smaller than what was achieved by the optimised protocol (Fig. S2a). 

 

The observation that using no formate and 0.5-part formate resulted in no crystallisation and 

a longer lag phase than using 1- or 2-part formate, respectively, suggests that the modulator 

acts as a base that deprotonates the ligand, accelerating nucleation and growth rates and 

leading to small crystals [3]. However, the fact that the crystal size went through a maximum 

at 1-part formate when the amount of formate was varied from 0 to 2 parts made us doubt 

the role of formate was just to increase nucleation and growth rates. It is possible that the 

other role of formate – a competitive ligand [3, 4] – was in force simultaneously and 

generating the opposing effect, i.e. slowing down nucleation and growth and facilitating the 

formation of larger crystals. We postulate under our synthetic conditions, the modulator 

formate acts as both a deprotonation agent and a competitive ligand; the crystal size can be 

maximised when a fine balance is achieved between the two opposing roles. Direct 

experimental evidence is needed to validate or disprove our postulation.  

 

1.1.3. Synthesis at other temperatures 

The protocol described in the Method section of the main manuscript was also carried out at 

70 °C and 110 °C. ZIF-8 made at 70 °C are small and highly intergrown (Fig. S3). Multiple 

attempts at 110 °C were unsuccessful because the vapour pressure of methanol at 110 °C 

compromised the seal of the crimp caps, and methanol evaporated completely. 
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1.2. Epoxy non-permeability check 

A membrane without a ZIF-8 crystal was constructed (Fig. S8) to check the non-permeability 

of the epoxy. Freshly mixed epoxy was allowed to partially cure for 3 minutes before spread 

over the hole of a steel plate. The semi-hardened epoxy was still able to bond to the steel 

plate, yet viscous enough not to seep through the hole to the other side. Helium, the fastest 

permeating gas of the four, had a permeability of 26 barrer through the pure epoxy 

membrane at 24 °C, merely 1.3% and 1.1% of the helium permeabilities through ZIF8-SCM-

1 and ZIF8-SCM-2 respectively (Table S1). It was therefore established that the epoxy resin 

did not provide an alternative transport route for permeants at our experimental conditions. 
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1.3. Method to account for downstream air ingress 

We observed a continuous rise in the downstream pressure after the downstream and the 

segment between membrane and Valve V-2 (Fig. S5) were evacuated. Since no leaks were 

picked up by a helium leak detector, we postulated that the pressure rise was air ingress 

through fittings that were not rated to attain vacuum sealing. The small downstream volume 

of 1.2 cm3 made the pressure gauge sensitive to small amounts of gases.  

 

The rate of ingress to the downstream became approximately constant after 1.5 days and 

remained so at the end of the 4th day, as indicated by the linear pressure-time curve (Fig. 

S9). We therefore assumed that by keeping the duration of each permeation under 4 days (2 

days of stabilising downstream ingress + 2 days of gas permeation), the downstream ingress 

rate could be regarded constant. The actual rate of pressure rise caused by gas permeation 

(dP/dt)actual was calculated by: 

 

where 

(dP/dt)actual = the rate of pressure rise caused by permeant accumulated in the downstream 

(dP/dt)observed = the apparent gradient from the pressure-time curved collected during gas 

permeation, which is the result of both gas permeation and air ingress to the downstream 

  

actual observed ingress

dP dP dP
dt dt dt

æ ö æ ö æ ö= -ç ÷ ç ÷ ç ÷
è ø è ø è ø
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1.4. Calculation details 

1.4.1. Permeability 

Gas permeability was calculated by the following equation [5]: 

 

where p is the permeability in barrer (1 barrer = 10-10 cm3(STP) cm cm-2 s-1 cmHg-1), V is the 

downstream volume in cm3, L is the membrane thickness in cm, A is the permeation area in 

cm2 which, in our case, is the area of the hole in the centre of a steel plate, (ΔP)avg is the 

average trans-membrane pressure difference in cmHg, T is operating temperature in K, 

(dP/dt)actual is the rate of downstream pressure rise in cmHg s-1 after accounting for the air 

ingress rate. T0 and P0 are the standard state temperature (273 K) and pressure (76 cmHg) 

respectively. In our experiments, the downstream pressure was two-orders-of-magnitude 

smaller than the upstream, therefore we assumed the trans-membrane pressure difference 

to be constant ((ΔP)avg) for the duration of each permeation test.  

 

1.4.2. Ideal selectivity 

The ideal selectivity of gas i over gas j (αi/j) is the ratio of their permeatilities: 

 

When taking the ratio of two permeabilities, downstream volume, permeation area and 

membrane thickness disappear. The uncertainties associated with each quantity do not 

affect the accuracy of the ideal selectivity. Therefore, despite not having the most accurate 

downstream volume or membrane thickness, we are reasonably confident about the 

accuracy of our SCMs’ ideal selectivities. 

 

1.4.3. Knudsen selectivity 

( )
0

0 actualavg

TVL dPp
A P TP dt

æ ö= ç ÷D è ø

( )
( )
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/
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,
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Knudsen selectivity, calculated from the ratio of Knudsen diffusion fluxes[6], is: 

 

where Mi and Mj are the formula masses of i and j respectively. 

  

1.4.4. Membrane thickness 

Since the embedded ZIF-8 crystal does not have a set of parallel surfaces along the 

direction of pressure gradient, we estimated the average thickness along this direction by 

using a microscope image processing software (Motic) to trace the boundary of the side-

view of the crystal as if it was embedded in the membrane assembly (Fig. S10). After the 

correct calibration and magnification settings were given to the software, it automatically 

calculated the cross-sectional area. To measure the length as seen on the crystal side-view 

that corresponded to the large, flat base glued to the steel plate, we drew a parallel line of 

the same length. The average crystal thickness in the direction of pressure gradient was 

estimated by cross-sectional area/length of the base. 

 

1.4.5. Downstream volume 

The downstream volume is the sum of the internal volumes of downstream fittings. The 

internal volumes were calculated from the computer-aided design drawings available on the 

Swagelok website. 

  

( )/ j
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1.5. Self-diffusion Coefficients of CH4, CO2 and N2 in ZIF-8 

from Molecular Simulations 

Self-diffusivities of CH4, CO2 and N2 at 298 K in ZIF-8 were calculated by running equilibrium 

molecular dynamics (MD) simulations in the NVT ensemble using the DL_POLY CLASSIC 

software. Prior to running the MD simulations the numbers of molecules of CH4, CO2 and N2 

adsorbed in ZIF-8 at 298 K and 2 bars, which is the experimental feed pressure, were 

predicted by performing grand canonical Monte Carlo (GCMC) simulations using the RASPA 

molecular simulation package. The predicted loadings were then used in the MD simulations. 

For both GCMC and MD simulations, a simulation box consisting of ZIF-8 unit cell replicated 

by 2 × 2 × 2 in the x, y and z directions, respectively, was used. The short-range interactions 

between the atoms in the system were calculated using the Lennard-Jones (LJ) potential 

and the long-range electrostatic interactions were computed using the Ewald sum method. 

Cut-off distance for the LJ interactions and the real part of Ewald sum was set to 13 Å. 

Transferable potentials for phase equilibria (TraPPE) force field was used for modelling the 

CH4, N2 and CO2 gas molecules (Table S4) [7, 8]. To model the ZIF-8 structure we 

considered flexible force fields developed by Krokidas et al. [9], Wu et al. [10], Zhang et al. 

[11], and Zheng et al. [12, 13], all of which have been widely used in the literature in 

molecular simulation studies of ZIF-8. 

 

During the GCMC simulations, the ZIF-8 atoms were held fixed at their crystallographically 

determined positions. Translation, rotation and insertion/deletion of the gas molecules were 

sampled with equal probability. Each GCMC simulation was equilibrated for 105 cycles 

followed by a 105-cycle production run. A cycle is N steps where N is either 20 or the number 

of molecules in the system, whichever is greater. The predicted average numbers of 

molecules adsorbed in ZIF-8 for each force field type are given in Table S5. These were 

rounded off to the nearest integer and then used in the MD simulations. 
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During the MD simulations, ZIF-8 framework was treated fully flexible. A Nose-Hoover 

thermostat was used to keep the temperature at 298 K. The time step was set to 1 fs and 

each simulation was equilibrated for 5 ns and then run for another 40 ns. Trajectories were 

saved every 1000 steps. Self-diffusivities of CH4, CO2 and N2 were then calculated by mean 

squared displacement method using the Einstein relation: 

 

where N is the number of gas molecules in the system, ri(t) is the instantaneous position of 

the ith gas molecule and ri(t0) is the initial position of the same molecule. To improve the 

statistics, multiple origins were used and self-diffusion coefficients were calculated over 30 

ns trajectories which are reported for each ZIF-8 force field type in Table S6. 
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2. Supplementary figures 

 

Fig. S1. Nitrogen isotherms at 77 K. The Type 1 adsorption isotherm confirmed the 

microporous nature of ZIF-8. The inset reveals several adsorption sub-steps at low relative 

pressures (i.e. micropore region) that were also observed in previous studies [14-16]. 

Possible reasons for the sub-steps include rearrangement of adsorbed nitrogen molecules 

[15] and structural changes to ZIF-8 caused by adsorbed nitrogen molecules [16].   
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Fig. S2. Micrographs of ZIF-8 crystals made with various changes in precursors at 90 °C. (a) 

Crystals made by the optimised protocol appear to be high-quality, single crystals above 500 

µm. (b) Crystals made from zinc chloride are mostly in the range of 50 – 150 µm, smaller 

than those made from zinc nitrate hexahydrate in the optimised protocol. (c) Crystals made 

using molar ratio Zn:MeIM:formate:methanol = 1:2:0.5:167 (i.e. the amount of sodium 

formate is half of the optimised protocol’s) are too small to be examined by our microscope 

except a few crystals that are between 100 and 200 µm. (d) Crystals made using molar ratio 

Zn:MeIM:formate:methanol = 1:2:2:167 (i.e. the amount of sodium formate is twice of the 

optimised protocol’s) are small and intergrown.   
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Fig. S3. A micrograph of ZIF-8 crystals made from zinc nitrate hexahydrate at 70 °C. The 

crystals are small, highly intergrown, or have no well-defined morphology. 
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Fig. S4. ZIF-8 from different perspectives. (a) A rhombic dodecahedron, the morphology of 

ZIF-8. This file, ‘Rhombicdodecahedron.jpg’ by Cyp is licensed under the Creative Commons 

Attribution-Share Alike 3.0 Unported (CC BY-SA 3.0) license. (b) An illustration of the 2-

dimensional top view when a ZIF-8 crystal is viewed along [111], [110] and [100] directions. 

(c) Top views of three ZIF-8 ‘half crystals’ grown on the wall of a glass vial with different 

growth directions. When they lie on their large, flat surface, the top views correspond to the 

shapes of a rhombic dodecahedron viewed in directions (shown in b) equal to their 

respective growth directions. 
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Fig. S5. A schematic diagram of the permeation rig. The downstream of the rig has a 

constant volume and variable pressure as permeant accumulates in the downstream.   
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Fig. S6. Single-gas permeabilities of ZIF-8 single-crystal membranes. Experiments were 

conducted at room temperatures between 20 and 25 °C. 1 barrer = 10-10 cm3(STP) cm cm-2 

s-1 cmHg-1. 
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Fig. S7. Single crystals of ZIF-8 grown on the wall of a synthesis vial in their mother liquor. 

Using the optimised protocol, we had many high-quality, large, single crystals on the wall. 

Most of the product was inter-grown crystals aggregating at the bottom of the vial; these 

products were used for PXRD and N2 sorption. For size comparison, the outer diameter of 

the vial is 23 mm. 
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Fig. S8. A schematic side-view of the pure-epoxy membrane. Lp and LP+E denote the 

thickness of steel plate and the combined thickness and steel plate and epoxy respectively. 

We approximated the thickness of the epoxy membrane by (LP+E – LP), neglecting the 

thickness of epoxy that seeped through the hole.  
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Fig. S9. Downstream pressure evolution due to air ingress. The air ingress for both ZIF8-

SCM-1 and ZIF8-SCM-2 reached steady-state after approximately 1.5 days (indicated by the 

linear portions of the two curves). We regarded the gradients of the linear portions as the 

ingress rate (dP/dt)ingress of the two membranes, and subtracted (dP/dt)ingress from the 

observed gradients during gas permeations (dP/dt)observed to obtain the rate of pressure rise 

actually caused by gas permeation. 
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Fig. S10. Method of estimating the average crystal thickness. The crystal is the same as Fig. 

3b inset.   

Imaginary 
steel plate 

Direction of 

pressure gradient 
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3. Supplementary tables 

Table S1. Single-gas permeabilities and ideal selectivities. Single-gas permeabilities P of 

two single-crystal ZIF-8 membranes tested at room temperature (20 – 25 °C), and ideal 

permselectivities α(i/j) calculated as Pi/Pj. The transmembrane pressure difference was 

approximately constant at 2 bar.  

Single-gas permeability (barrer) 
  ZIF8-SCM-1 ZIF8-SCM-2 
He 1935 2309 
CO2 750.7 577.1 
N2 26.0 29.7 
CH4 93.4 57.5 
Ideal selectivity 
α(He/CO2) 2.6 4.0 
α(He/N2) 74.5 77.7 
α(He/CH4) 20.7 40.1 
α(CO2/N2) 28.9 19.4 
α(CO2/CH4) 8.0 10.0 
α(CH4/N2) 3.6 1.9 
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Table S2. Ceramic-supported polycrystalline ZIF-8 membranes reported in the literature and their single-gas permeances at room 
temperature. Permeabilities were calculated from permeances and membrane thicknesses. 

First 
author 
(year) 

Temperature 
(°C)* 

Thickness 
(µm) 

Single-gas permeance  
(×10-8 mol m-2 s-1 Pa-1) 

Single-gas permeability 
(barrer)** Ideal selectivity 

He CO2 N2 CH4 He CO2 N2 CH4 α(CO2/N2) α(CO2/CH4) α(He/CH4) α(CH4/N2) 
Knudsen diffusion 0.80 0.60 2.83 1.32 
Tanaka 
(2017)[17] 25 1 - 3.71 1.69 1.55 - 110.8 50.4 46.2 2.21 2.39 - 0.93 
Huang 
(2013)[18] unknown 2 - 12.20 3.52 3.22 - 729.1 210.4 192.4 3.47 3.79 - 0.91 
Liu 
(2014)[19] 35 2.5 19.10 12.20 4.46 4.17 1427 911.3 333.2 311.5 2.74 2.93 4.58 0.93 
Pan 
(2011)[20] 23 2.5 - 13.00 9.00 8.00 - 971.1 672.3 597.6 1.44 1.63 - 0.89 
Pan 
(2012)[21] 22 2 - 40.00 14.00 12.00 - 2390 836.6 717.1 2.86 3.33 - 0.86 
Tao 
(2013)[22] 30 5 - 21.15 15.07 16.18 - 3160 2251 2417 1.40 1.31 - 1.07 
Tao 
(2013)[23] 25 20 - 13.50 7.92 6.75 - 8068 4733 4034 1.70 2.00 - 0.85 
Xu 
(2011)[24] 25 6 - 1.70 31.00 25.00 - 304.8 5558 4482 0.05 0.07 - 0.81 
Shekhah 
(2014)[25] 35 0.5 0.89 0.41 0.19 0.20 13.3 6.1 2.8 3.0 2.16 2.05 4.45 1.05 
Hu 
(2016)[26] 25 0.1 - 3.44 0.49 0.49 - 10.3 1.5 1.5 6.99 7.08 - 0.99 
Drobek 
(2015)[27] 25 17.5 6.00 2.80 1.10 1.00 3137 1464 575.2 522.9 2.55 2.80 6.00 0.91 
Zhang 
(2013)[28] 25 8 - 5.12 2.02 2.00 - 1224 482.9 478.1 2.53 2.56 - 0.99 
Fan 
(2012)[29] 25 60 - 9.56 14.70 11.70 - 17139 26354 20976 0.65 0.82 - 0.80 
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First 
author 
(year) 

Temperature 
(°C) 

Thickness 
(µm) 

Single-gas permeance  
(×10-8 mol m-2 s-1 Pa-1) 

Single-gas permeability 
(barrer) Ideal selectivity 

He CO2 N2 CH4 He CO2 N2 CH4 α(CO2/N2) α(CO2/CH4) α(He/CH4) α(CH4/N2) 
Yu 
(2016)[30] 25 2.5 - 12.00 7.00 6.10 - 896.4 522.9 455.7 1.71 1.97 - 0.87 
Hara 
(2015)[31] 25 20 19.00 10.00 4.50 5.00 11354 5976 2689 2988 2.22 2.00 3.80 1.11 
Hara 
(2014)[32] 25 80 4.50 2.70 0.95 1.10 10757 6454 2271 2629 2.84 2.45 4.09 1.16 
Wang 
(2016)[33] unspecified 5 - 31.75 17.40 15.47 - 4744 2600 2311 1.82 2.05 - 0.89 
McCarthy 
(2010)[34] 25 20 - 4.45 1.49 1.33 - 2659 890.4 794.8 2.99 3.35 - 0.89 
Zhang 
(2017)[35] 25 0.55 - 1.47 3.16 1.66 - 24.1 51.8 27.3 0.47 0.88 - 0.53 
Liu 
(2015)[36] 30 0.16 - 0.19 0.06 0.02 - 0.9 0.3 0.1 3.09 10.29 - 0.30 
Bux 
(2009)[37] 25 30 - 1.33 0.52 0.48 - 1192 466.1 430.3 2.56 2.77 - 0.92 
Kong 
(2014)[38] 30 2.5 - 38.50 14.70 12.10 - 2876 1098 903.9 2.62 3.18 - 0.82 
Xie 
(2012)[39] 25 2 - 327.4 371.1 - - 19567 22178 - 0.88 - - - 
Shah 
(2013)[40] 25 25 - 4.50 2.00 1.90 - 3362 1494 1419 2.25 2.37 - 0.95 

 

*: unless specified by authors, ‘room temperature’ is assumed to be 25 °C 

**: 1 barrer = 10-10 cm3(STP) cm cm-2 s-1 cmHg-1. Permeability is calculated by the following equation: 

Permeability (barrer) = permeance (mol m-2 s-1 Pa-1) × thickness (µm) × 29.88  
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Table S3. Crystallographic data of ZIF-8 from single-crystal X-ray diffraction. 

Crystal data and structure refinement 

Formula C8 H10 N4 Zn, 0.33(C H4 O) 

Formula weight 238.25 
Temperature 173(2) K 

Diffractometer, wavelength Agilent Xcalibur 3 E, 0.71073 Å 
Crystal system, space group Cubic, I-43m 

Unit cell dimensions a = 16.9853(4) Å     α = 90° 

b = 16.9853(4) Å     β = 90° 
c = 16.9853(4) Å     γ = 90° 

Volume, Z 4900.2(4) Å
3
, 12 

Density (calculated) 0.969 mg/m
3
 

Absorption coefficient 1.482 mm
-1

 
F(000) 1464 
Crystal colour / morphology Colourless blocks 

Crystal size 0.66 × 0.60 × 0.55 mm
3
 

θ range for data collection 3.393 to 28.075° 
Index ranges -14 ≤ h ≤12, -19 ≤ k ≤ 4, -11 ≤ l ≤ 21 

Reflections collected / unique 2076 / 873 [R(int) = 0.0213] 

Reflections observed [F > 4σ(F)] 838 
Absorption correction Analytical 

Max. and min. transmission 0.587 and 0.537 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 873 / 0 / 35 

Goodness-of-fit on F
2
 1.037 

Final R indices [F > 4σ(F)] R1 = 0.0218, wR2 = 0.0510 

R indices (all data) R1 = 0.0237, wR2 = 0.0517 

Absolute structure parameter -0.028(15) 
Largest diff. peak, hole 0.158, -0.241 eÅ

-3
 

Mean and maximum shift/error 0.000 and 0.000 

Bond lengths (Å) 

Zn(1)-N(2) 1.9913(18) 
Zn(1)-N(2)#1 1.9913(18) 
Zn(1)-N(2)#2 1.9913(18) 
Zn(1)-N(2)#3 1.9913(18) 
C(1)-N(2)#4 1.336(3) 
C(1)-N(2) 1.336(3) 
C(1)-C(4) 1.497(6) 
N(2)-C(3) 1.375(3) 
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C(3)-C(3)#4 1.332(5) 

Bond angles (°) 

N(2)-Zn(1)-N(2)#1 109.47(6) 
N(2)-Zn(1)-N(2)#2 109.48(6) 
N(2)#1-Zn(1)-N(2)#2 109.46(12) 
N(2)-Zn(1)-N(2)#3 109.46(12) 
N(2)#1-Zn(1)-N(2)#3 109.48(6) 
N(2)#2-Zn(1)-N(2)#3 109.48(6) 
N(2)#4-C(1)-N(2) 112.0(4) 
N(2)#4-C(1)-C(4) 123.98(19) 
N(2)-C(1)-C(4) 123.98(19) 
C(1)-N(2)-C(3) 105.3(3) 
C(1)-N(2)-Zn(1) 128.1(2) 
C(3)-N(2)-Zn(1) 126.63(16) 
C(3)#4-C(3)-N(2) 108.73(14) 
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Table S4. Lennard-Jones parameters for CH4, CO2 and N2 molecules.* 

Molecule Atom ε/kB (K) σ (Å) Charge 

CH4 CH4 148.0 3.73 N/A 

CO2 
C 27.0 2.80 0.7 
O 79.0 3.05 -0.35 

N2 
N 36.0 3.31 -0.482 
N_com N/A N/A 0.964 

* The Lorentz-Berthelot mixing rules were used to calculate the interaction parameters between 
unlike atoms. 

 

Table S5. Predicted number of CH4, CO2 and N2 molecules adsorbed per 2 × 2 × 2 ZIF-8 

system at 2 bars and 298 K for different ZIF-8 force fields from GCMC simulations. 

Force field used CH4 CO2 N2 

Krokidas et al. 21.14 45.72 7.42 
Wu et al.  12.07 20.71 4.77 
Zhang et al. 9.04 15.27 3.88 
Zheng et al. 20.88 48.88 7.42 

 

 

Table S6. Self-diffusion coefficients of CH4, CO2 and N2 in ZIF-8 calculated for loadings 

obtained at 2 bars and 298 K from MD simulations using different ZIF-8 force fields. 

Force field used CH4 (10-10 m2/s) CO2 (10-10 m2/s) N2 (10-10 m2/s) 

Krokidas et al. 2.00 11.7 8.38 
Wu et al. 23.7 20.9 37.5 
Zhang et al. 0.37 3.31 1.53 
Zheng et al. 0.15 2.17 1.71 

 

 

  



28 
 

Table S7. Simulated ideal selectivities of CO2 /N2, CO2/CH4 and CH4 /N2 mixtures in ZIF-8. Here 

the ideal selectivity is defined as (qi/qj)×(Di/Dj), where q is the adsorbed amount and D is the 

self-diffusion coefficient. 

Ideal Selectivity  CO2 / N2 CO2 / CH4  CH4 / N2  

Krokidas et al. 8.61 12.65 0.68 
Wu et al. 2.42 1.51 1.60 
Zhang et al. 8.52 15.12 0.56 
Zheng et al. 8.36 33.87 0.25 
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