417 research outputs found

    The V-A sum rules and the Operator Product Expansion in complex q^2-plane from tau-decay data

    Get PDF
    The operator product expansion (OPE) for the difference of vector and axial current correlators is analyzed for complex values of momentum q^2. The vector and axial spectral functions, taken from hadronic tau-decay data, are treated with the help of Borel, Gaussian and spectral moments sum rules. The range of applicability, advantages and disadvantages of each type are discussed. The general features of OPE are confirmed by the data. The vacuum expectation values of dimension 6 and 8 operators are found to be O_6=-(6.8\pm 2.1)*10^{-3} GeV^6, O_8=(7\pm 4)*10^{-3} GeV^8.Comment: 1 latex + 10 eps files, 14 page

    The first dozen years of the history of ITEP Theoretical Physics Laboratory

    Full text link
    The theoretical investigations at ITEP in the years 1945-1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: 1) the theory of nuclear reactors on thermal neutrons; 2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); 3) radiation theory; ~4) low temperature physics; 5) quantum electrodynamics and quantum field theories; 6) parity violation in weak interactions, the theory of β\beta-decay and other weak processes; 7) strong interaction and nuclear physics. To the review are added the English translations of few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.Comment: 55 pages, 5 fig

    Following a "Collapsing" Wavefunction

    Full text link
    I study the quantum mechanics of a spin interacting with an ``apparatus''. Although the evolution of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin exhibits loss of quantum coherence, or ``wavefunction collapse'', of the sort usually associated with a quantum measurement. The system is analyzed from the point of view of the spin density matrix (or ``Schmidt paths''), and also using the consistent histories approach. These two points of view are contrasted with each other. Connections between the results and the form of the Hamiltonian are discussed in detail.Comment: 30 pages, plain LaTex, 3 figures in a separate uuencoded fil

    Information measures and classicality in quantum mechanics

    Full text link
    We study information measures in quantu mechanics, with particular emphasis on providing a quantification of the notions of classicality and predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a precise criterion for phase space classicality and argue that in view of this a) I provides a measure of the degree of deviation from classicality for closed system b) I - S (S the von Neumann entropy) plays the same role in open systems We examine particular examples in non-relativistic quantum mechanics. Finally, (this being one of our main motivations) we comment on field classicalisation on early universe cosmology.Comment: 35 pages, LATE

    Noise induced transitions in semiclassical cosmology

    Get PDF
    A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a non local term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near zero scale factor (initial singularity) it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from "nothing" into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.Comment: LaTex, 33.tex pages, no figure

    Strong Interactions at Low Energy

    Get PDF
    The lectures review some of the basic concepts relevant for an understanding of the low energy properties of the strong interactions: chiral symmetry, spontaneous symmetry breakdown, Goldstone bosons, quark condensate. The effective field theory used to analyze the low energy structure is briefly sketched. As an illustration, I discuss the implications of the recent data on the decay K→ππeνK\to \pi\pi e\nu for the magnitude of the quark condensate.Comment: Lectures given at the school of physics "Understanding the structure of hadrons", Prague, July 2001, 20 p

    Flavour SU(3) Symmetry in Charmless B Decays

    Full text link
    QCD sum rules are used to estimate the flavour SU(3)-symmetry violation in two-body B decays to pions and kaons. In the factorizable amplitudes the SU(3)-violation manifests itself in the ratio of the decay constants f_K/f_pi and in the differences between the B->K, B_s->K and B->pi form factors. These effects are calculated from the QCD two-point and light-cone sum rules, respectively, in terms of the strange quark mass and the ratio of the strange and nonstrange quark-condensate densities. Importantly, QCD sum rules predict that SU(3) breaking in the heavy-to-light form factors can be substantial and does not vanish in the heavy-quark mass limit. Furthermore, we investigate the strange-quark mass dependence of nonfactorizable effects in the B->K pi decay amplitudes. Taking into account these effects we estimate the accuracy of several SU(3)-symmetry relations between charmless B-decay amplitudes.Comment: Two references added, version to be published in Phys.Rev.D, 21 pages, 12 postscript figure

    Lectures on Chiral Disorder in QCD

    Full text link
    I explain the concept that light quarks diffuse in the QCD vacuum following the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to disordered electrons in metals, identifying, among others, the universal regime described by random matrix theory, diffusive regime described by chiral perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200

    QCD sum rule for nucleon in nuclear matter

    Full text link
    We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological NN potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199
    • …
    corecore