219 research outputs found
Blazar Flaring Rates Measured with GLAST
We derive the minimum observing time scales to detect a blazar at a given
flux level with the LAT on GLAST in the scanning and pointing modes. Based upon
Phase 1 observations with EGRET, we predict the GLAST detection rate of blazar
flares at different flux levels. With some uncertainty given the poor
statistics of bright blazars, we predict that a blazar flare with integral flux
>~ 200e-8 ph(> 100 MeV) cm^{-2} s^{-1}, which are the best candidates for
Target of Opportunity pointings and extensive temporal and spectral studies,
should occur every few days.Comment: 7 pages, 2 figures, in 2nd VERITAS Symposium on TeV Astrophysiscs,
ed. L. Fortson and S. Swordy, in press, New Astronomy Review
An MPEG-7 scheme for semantic content modelling and filtering of digital video
Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
A lattice model for the kinetics of rupture of fluid bilayer membranes
We have constructed a model for the kinetics of rupture of membranes under
tension, applying physical principles relevant to lipid bilayers held together
by hydrophobic interactions. The membrane is characterized by the bulk
compressibility (for expansion), the thickness of the hydrophobic part of the
bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of
the lipids. The model is a lattice model which incorporates strain relaxation,
and considers the nucleation of pores at constant area, constant temperature,
and constant particle number. The particle number is conserved by allowing
multiple occupancy of the sites. An equilibrium ``phase diagram'' is
constructed as a function of temperature and strain with the total pore surface
and distribution as the order parameters. A first order rupture line is found
with increasing tension, and a continuous increase in proto-pore concentration
with rising temperature till instability. The model explains current results on
saturated and unsaturated PC lipid bilayers and thicker artificial bilayers
made of diblock copolymers. Pore size distributions are presented for various
values of area expansion and temperature, and the fractal dimension of the pore
edge is evaluated.Comment: 15 pages, 8 figure
Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites
Annihilating dark matter particles produce roughly as much power in electrons
and positrons as in gamma ray photons. The charged particles lose essentially
all of their energy to inverse Compton and synchrotron processes in the
galactic environment. We discuss the diffuse signature of dark matter
annihilations in satellites of the Milky Way (which may be optically dark with
few or no stars), providing a tail of emission trailing the satellite in its
orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron
emission at radio wavelengths might be seen. We discuss the possibility of
detecting these signals with current and future observations, in particular
EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure
Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes
New algorithms for computing of asymptotic expansions for stationary
distributions of nonlinearly perturbed semi-Markov processes are presented. The
algorithms are based on special techniques of sequential phase space reduction,
which can be applied to processes with asymptotically coupled and uncoupled
finite phase spaces.Comment: 83 page
Rotating Black Branes in the presence of nonlinear electromagnetic field
In this paper, we consider a class of gravity whose action represents itself
as a sum of the usual Einstein-Hilbert action with cosmological constant and an
gauge field for which the action is given by a power of the Maxwell
invariant. We present a class of the rotating black branes with Ricci flat
horizon and show that the presented solutions may be interpreted as black brane
solutions with two event horizons, extreme black hole and naked singularity
provided the parameters of the solutions are chosen suitably. We investigate
the properties of the solutions and find that for the special values of the
nonlinear parameter, the solutions are not asymptotically anti-deSitter. At
last, we obtain the conserved quantities of the rotating black branes and find
that the nonlinear source effects on the electric field, the behavior of
spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ
Pliocene Model Intercomparison Project Phase 3 (PlioMIP3) – Science plan and experimental design
The Pliocene Model Intercomparison Project (PlioMIP) was initiated in 2008. Over two phases PlioMIP has helped co-ordinate the experimental design and publication strategy of the community, which has included an increasing number of climate models and modelling groups from around the world. It has engaged with palaeoenvironmental scientists to foster new data synthesis supporting the construction of new model boundary conditions, as well as to facilitate new data-model comparisons. The work has advanced our understanding of Pliocene climates and environments, enhanced our knowledge regarding the ability of complex climate and Earth System models to accurately simulate climate change, and helped to refine our estimates of how sensitive the climate system is to forcing conditions.
In this community protocol paper, we outline the scientific plan for PlioMIP Phase 3 (PlioMIP3). This plan provides the required guidance to participating modelling groups from around the world to successfully set up and perform PlioMIP3 climate model experiments. The project is open to new participants from the scientific community (both from the climate modelling and geosciences communities).
In PlioMIP3, we retain the PlioMIP2 Core experiments (Eoi400, E280) and extend the Core requirements to include either an experiment focussed on the Early Pliocene or an alternative Late Pliocene simulation (or both). These additions (a) allow a comparison of Early and Late Pliocene warm intervals and help build research connections and synergy with the MioMIP (Miocene Model Intercomparison Project - also known as DeepMIP-Miocene) and PlioMioVAR projects (Pliocene-Miocene Variability Working Group), and (b) create an alternative time slice simulation for 3.205 Ma (MIS KM5c) through removal of some of the largest palaeogeographic differences introduced between PlioMIP1 and 2 resulting in minimal land-sea mask variations from the modern. In addition, we present ten optional experiments designed to enhance our assessment of climate sensitivity and to explore the uncertainty in greenhouse gas-related forcing. For the first time, we introduce orbital sensitivity experiments into the science plan, as well as simulations incorporating dynamic vegetation-climate feedbacks and an experiment designed to examine the potential significance of East Antarctic Ice Sheet boundary condition uncertainty. These changes enhance palaeo-to-future scientific connections and enable an exploration of the significance of palaeogeographic uncertainties on climate simulations
Introducing ‘Anthropocene Science’: A new international journal for addressing human impact on the resilience of planet earth
Welcome to the new journal Anthropocene Science (eISSN 2731-3980), an exciting trans- and multidisciplinary international peer-reviewed journal for addressing human impact on the resilience of planet Earth, published by Springer Natur
De novo design of proteins housing excitonically coupled chlorophyll special pairs
Natural photosystems couple light harvesting to charge separation using a ‘special pair’ of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods
Fecundity and spawning of the Atlantic horseshoe crab, Limulus polyphemus, in Pleasant Bay, Cape Cod, Massachusetts, USA
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Marine Ecology 27 (2006): 54-65, doi:10.1111/j.1439-0485.2005.00053.x.This study provided the first comprehensive analysis of Atlantic horseshoe crab (Limulus polyphemus) fecundity. Limulus appear to be determinate spawners, maturing all their eggs for the breeding season before spawning begins. On average, larger females held a larger number of eggs (63,500) than smaller females (14,500). By the end of the breeding season there was an average of 11,600 mature eggs female-1 left undeposited, regardless of female size. Larger females laid a higher percentage of the eggs they contained. Thus they not only contain more eggs, but are more effective at laying them as well. Size of spawning females ranged from about 185-300 mm prosomal width, with by far the highest concentration in the mid-size ranges. Although on an individual basis large females carry and lay the greatest number of eggs, mid-size crabs as a group contributed more to the horseshoe crab population in Pleasant Bay because they were more plentiful (net fecundity was highest for mid-size crabs). These results have implications for the management of this important species, which is harvested for bait, scientific, and biomedical uses. Incorporation of these results into models and other management tools can help predict growth rates, effects of size-selective harvest, reproductive value, and stable stage distribution of populations.This project was partially funded by MIT Sea Grant 8247-5
- …