654 research outputs found
Genetic differentiation in Scottish populations of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae)
Pine beauty moth, Panolis flammea (Denis & SchiffermĂŒller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.A.J. Lowe, B.J. Hicks, K. Worley, R.A. Ennos, J.D. Morman, G. Stone and A.D. Wat
Key lessons from the COVID-19 public health response in Australia
Australia avoided the worst effects of the COVID-19 pandemic, but still experienced many negative impacts. Reflecting on lessons from Australia's public health response, an Australian expert panel composed of relevant discipline experts identified the following key lessons: 1) movement restrictions were effective, but their implementation requires careful consideration of adverse impacts, 2) disease modelling was valuable, but its limitations should be acknowledged, 3) the absence of timely national data requires re-assessment of national surveillance structures, 4) the utility of advanced pathogen genomics and novel vaccine technology was clearly demonstrated, 5) decision-making that is evidence informed and consultative is essential to maintain trust, 6) major system weaknesses in the residential aged-care sector require fixing, 7) adequate infection prevention and control frameworks are critically important, 8) the interests and needs of young people should not be compromised, 9) epidemics should be recognised as a âstanding threatâ, 10) regional and global solidarity is important. It should be acknowledged that we were unable to capture all relevant nuances and context specific differences. However, the intent of this review of Australia's public health response is to critically reflect on key lessons learnt and to encourage constructive national discussion in countries across the Western Pacific Region
Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States
We introduce the notion of quantum dissension for a three-qubit system as a
measure of quantum correlations. We use three equivalent expressions of
three-variable mutual information. Their differences can be zero classically
but not so in quantum domain. It generalizes the notion of quantum discord to a
multipartite system. There can be multiple definitions of the dissension
depending on the nature of projective measurements done on the subsystems. As
an illustration, we explore the consequences of these multiple definitions and
compare them for three-qubit pure and mixed GHZ and W states. We find that
unlike discord, dissension can be negative. This is because measurement on a
subsystem may enhance the correlations in the rest of the system. This approach
can pave a way to generalize the notion of quantum correlations in the
multiparticle setting.Comment: 9 pages 6 figures typo fixed and some arguments adde
Glass Transition of Hard Sphere Systems: Molecular Dynamics and Density Functional Theory
The glass transition of a hard sphere system is investigated within the
framework of the density functional theory (DFT). Molecular dynamics (MD)
simulations are performed to study dynamical behavior of the system on the one
hand and to provide the data to produce the density field for the DFT on the
other hand. Energy landscape analysis based on the DFT shows that there appears
a metastable (local) free energy minimum representing an amorphous state as the
density is increased. This state turns out to become stable, compared with the
uniform liquid, at some density, around which we also observe sharp slowing
down of the relaxation in MD simulations.Comment: 5 pages, 5 figure
Photoconductance Quantization in a Single-Photon Detector
We have made a single-photon detector that relies on photoconductive gain in
a narrow electron channel in an AlGaAs/GaAs 2-dimensional electron gas. Given
that the electron channel is 1-dimensional, the photo-induced conductance has
plateaus at multiples of the quantum conductance 2e/h. Super-imposed on
these broad conductance plateaus are many sharp, small, conductance steps
associated with single-photon absorption events that produce individual
photo-carriers. This type of photoconductive detector could measure a single
photon, while safely storing and protecting the spin degree of freedom of its
photo-carrier. This function is valuable for a quantum repeater that would
allow very long distance teleportation of quantum information.Comment: 4 pages, 4 figure
Scalar cosmological perturbations from inflationary black holes
We study the correction to the scale invariant power spectrum of a scalar
field on de Sitter space from small black holes that formed during a
pre-inflationary matter dominated era. The formation probability of such black
holes is estimated from primordial Gaussian density fluctuations. We determine
the correction to the spectrum by first deriving the Keldysh propagator for a
massless scalar field on Schwarzschild-de Sitter space. Our results suggest
that the effect is strong enough to be tested -- and possibly even ruled out --
by observations.Comment: 41 pages, 11 figures, published versio
Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy
Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing
cosmological constant , we investigate how the presence of a local
spherically-symmetric inhomogeneity can affect apparent cosmological
observables, such as the deceleration parameter or the effective equation of
state of dark energy (DE), derived from the luminosity distance under the
assumption that the real space-time is exactly homogeneous and isotropic. The
presence of a local underdensity is found to produce apparent phantom behavior
of DE, while a locally overdense region leads to apparent quintessence
behavior. We consider relatively small large scale inhomogeneities which today
are not linear and could be seeded by primordial curvature perturbations
compatible with CMB bounds. Our study shows how observations in an
inhomogeneous CDM universe with initial conditions compatible with the
inflationary beginning, if interpreted under the wrong assumption of
homogeneity, can lead to the wrong conclusion about the presence of "fake"
evolving dark energy instead of .Comment: 22 pages, 19 figures,Final version to appear in European Physical
Journal
Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication
Bennett et al. showed that allowing shared entanglement between a sender and
receiver before communication begins dramatically simplifies the theory of
quantum channels, and these results suggest that it would be worthwhile to
study other scenarios for entanglement-assisted classical communication. In
this vein, the present paper makes several contributions to the theory of
entanglement-assisted classical communication. First, we rephrase the
Giovannetti-Lloyd-Maccone sequential decoding argument as a more general
"packing lemma" and show that it gives an alternate way of achieving the
entanglement-assisted classical capacity. Next, we show that a similar
sequential decoder can achieve the Hsieh-Devetak-Winter region for
entanglement-assisted classical communication over a multiple access channel.
Third, we prove the existence of a quantum simultaneous decoder for
entanglement-assisted classical communication over a multiple access channel
with two senders. This result implies a solution of the quantum simultaneous
decoding conjecture for unassisted classical communication over quantum
multiple access channels with two senders, but the three-sender case still
remains open (Sen recently and independently solved this unassisted two-sender
case with a different technique). We then leverage this result to recover the
known regions for unassisted and assisted quantum communication over a quantum
multiple access channel, though our proof exploits a coherent quantum
simultaneous decoder. Finally, we determine an achievable rate region for
communication over an entanglement-assisted bosonic multiple access channel and
compare it with the Yen-Shapiro outer bound for unassisted communication over
the same channel.Comment: 33 pages, 2 figures; v2 contains a proof of the quantum simultaneous
decoding conjecture for two-sender quantum multiple access channels; v3 shows
how to recover the known unassisted and assisted quantum communication
regions with a coherent quantum simultaneous decode
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
Spin-gravity coupling and gravity-induced quantum phases
External gravitational fields induce phase factors in the wave functions of
particles. The phases are exact to first order in the background gravitational
field, are manifestly covariant and gauge invariant and provide a useful tool
for the study of spin-gravity coupling and of the optics of particles in
gravitational or inertial fields. We discuss the role that spin-gravity
coupling plays in particular problems.Comment: 18 pages, 1 figur
- âŠ