634 research outputs found

    Genetic differentiation in Scottish populations of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae)

    Get PDF
    Pine beauty moth, Panolis flammea (Denis & Schiffermüller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.A.J. Lowe, B.J. Hicks, K. Worley, R.A. Ennos, J.D. Morman, G. Stone and A.D. Wat

    Key lessons from the COVID-19 public health response in Australia

    Get PDF
    Australia avoided the worst effects of the COVID-19 pandemic, but still experienced many negative impacts. Reflecting on lessons from Australia's public health response, an Australian expert panel composed of relevant discipline experts identified the following key lessons: 1) movement restrictions were effective, but their implementation requires careful consideration of adverse impacts, 2) disease modelling was valuable, but its limitations should be acknowledged, 3) the absence of timely national data requires re-assessment of national surveillance structures, 4) the utility of advanced pathogen genomics and novel vaccine technology was clearly demonstrated, 5) decision-making that is evidence informed and consultative is essential to maintain trust, 6) major system weaknesses in the residential aged-care sector require fixing, 7) adequate infection prevention and control frameworks are critically important, 8) the interests and needs of young people should not be compromised, 9) epidemics should be recognised as a ‘standing threat’, 10) regional and global solidarity is important. It should be acknowledged that we were unable to capture all relevant nuances and context specific differences. However, the intent of this review of Australia's public health response is to critically reflect on key lessons learnt and to encourage constructive national discussion in countries across the Western Pacific Region

    Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States

    Full text link
    We introduce the notion of quantum dissension for a three-qubit system as a measure of quantum correlations. We use three equivalent expressions of three-variable mutual information. Their differences can be zero classically but not so in quantum domain. It generalizes the notion of quantum discord to a multipartite system. There can be multiple definitions of the dissension depending on the nature of projective measurements done on the subsystems. As an illustration, we explore the consequences of these multiple definitions and compare them for three-qubit pure and mixed GHZ and W states. We find that unlike discord, dissension can be negative. This is because measurement on a subsystem may enhance the correlations in the rest of the system. This approach can pave a way to generalize the notion of quantum correlations in the multiparticle setting.Comment: 9 pages 6 figures typo fixed and some arguments adde

    Glass Transition of Hard Sphere Systems: Molecular Dynamics and Density Functional Theory

    Get PDF
    The glass transition of a hard sphere system is investigated within the framework of the density functional theory (DFT). Molecular dynamics (MD) simulations are performed to study dynamical behavior of the system on the one hand and to provide the data to produce the density field for the DFT on the other hand. Energy landscape analysis based on the DFT shows that there appears a metastable (local) free energy minimum representing an amorphous state as the density is increased. This state turns out to become stable, compared with the uniform liquid, at some density, around which we also observe sharp slowing down of the alphaalpha relaxation in MD simulations.Comment: 5 pages, 5 figure

    Photoconductance Quantization in a Single-Photon Detector

    Get PDF
    We have made a single-photon detector that relies on photoconductive gain in a narrow electron channel in an AlGaAs/GaAs 2-dimensional electron gas. Given that the electron channel is 1-dimensional, the photo-induced conductance has plateaus at multiples of the quantum conductance 2e2^{2}/h. Super-imposed on these broad conductance plateaus are many sharp, small, conductance steps associated with single-photon absorption events that produce individual photo-carriers. This type of photoconductive detector could measure a single photon, while safely storing and protecting the spin degree of freedom of its photo-carrier. This function is valuable for a quantum repeater that would allow very long distance teleportation of quantum information.Comment: 4 pages, 4 figure

    Scalar cosmological perturbations from inflationary black holes

    Full text link
    We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum by first deriving the Keldysh propagator for a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested -- and possibly even ruled out -- by observations.Comment: 41 pages, 11 figures, published versio

    Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy

    Full text link
    Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing cosmological constant Λ\Lambda, we investigate how the presence of a local spherically-symmetric inhomogeneity can affect apparent cosmological observables, such as the deceleration parameter or the effective equation of state of dark energy (DE), derived from the luminosity distance under the assumption that the real space-time is exactly homogeneous and isotropic. The presence of a local underdensity is found to produce apparent phantom behavior of DE, while a locally overdense region leads to apparent quintessence behavior. We consider relatively small large scale inhomogeneities which today are not linear and could be seeded by primordial curvature perturbations compatible with CMB bounds. Our study shows how observations in an inhomogeneous Λ\LambdaCDM universe with initial conditions compatible with the inflationary beginning, if interpreted under the wrong assumption of homogeneity, can lead to the wrong conclusion about the presence of "fake" evolving dark energy instead of Λ\Lambda.Comment: 22 pages, 19 figures,Final version to appear in European Physical Journal

    Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication

    Get PDF
    Bennett et al. showed that allowing shared entanglement between a sender and receiver before communication begins dramatically simplifies the theory of quantum channels, and these results suggest that it would be worthwhile to study other scenarios for entanglement-assisted classical communication. In this vein, the present paper makes several contributions to the theory of entanglement-assisted classical communication. First, we rephrase the Giovannetti-Lloyd-Maccone sequential decoding argument as a more general "packing lemma" and show that it gives an alternate way of achieving the entanglement-assisted classical capacity. Next, we show that a similar sequential decoder can achieve the Hsieh-Devetak-Winter region for entanglement-assisted classical communication over a multiple access channel. Third, we prove the existence of a quantum simultaneous decoder for entanglement-assisted classical communication over a multiple access channel with two senders. This result implies a solution of the quantum simultaneous decoding conjecture for unassisted classical communication over quantum multiple access channels with two senders, but the three-sender case still remains open (Sen recently and independently solved this unassisted two-sender case with a different technique). We then leverage this result to recover the known regions for unassisted and assisted quantum communication over a quantum multiple access channel, though our proof exploits a coherent quantum simultaneous decoder. Finally, we determine an achievable rate region for communication over an entanglement-assisted bosonic multiple access channel and compare it with the Yen-Shapiro outer bound for unassisted communication over the same channel.Comment: 33 pages, 2 figures; v2 contains a proof of the quantum simultaneous decoding conjecture for two-sender quantum multiple access channels; v3 shows how to recover the known unassisted and assisted quantum communication regions with a coherent quantum simultaneous decode

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=Λ+w1ρ(a)+w2aβ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a3(1+w)+ρ02aβ+ρ03a3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,00.4\Omega_{\text{m},0} \simeq 0.4 and n1n \simeq -1 (β=3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio

    Spin-gravity coupling and gravity-induced quantum phases

    Full text link
    External gravitational fields induce phase factors in the wave functions of particles. The phases are exact to first order in the background gravitational field, are manifestly covariant and gauge invariant and provide a useful tool for the study of spin-gravity coupling and of the optics of particles in gravitational or inertial fields. We discuss the role that spin-gravity coupling plays in particular problems.Comment: 18 pages, 1 figur
    corecore