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Glass transition of hard sphere systems: Molecular dynamics and density functional theory
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The glass transition of a hard sphere system is investigated within the framework of the density functional
theory (DFT). Molecular dynamic§MD) simulations are performed to study the dynamical behavior of the
system on the one hand and to provide the data to produce the density field for the DFT on the other hand.
Energy landscape analysis based on the DFT shows that there appears a mdtastdbfeee energy mini-
mum representing an amorphous state as the density is increased. This state turns out to become stable,
compared with the uniform liquid, at some density around which we also observe a sharp slowing down of the
a relaxation in the MD simulations.
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Understanding the universal mechanism of the glass trardata, we can discuss free energy within the DFT framework.
sition is one of the major challenges in current condensedhis MD approach, in conjunction with the DFT, enables us
matter physics. From a dynamical point of view, we wouldto study both dynamic and static aspects of the transition in
like to know how a drastic slowing down near the transitioncontrast with Bennett's approach.
point (temperature or densitand an eventual exceeding of ~ Our system consists dfl=1372 identical hard spheres
the relaxation time over the experimental time scale are rewith massmand diametetr in a cubic box of volumeé/ with
alized[1,2]. Energetically or statically, it is asked whether a periodic boundary conditions. Throughout this paper, the
thermodynamic glassy state with an amorphous arrangemenhits of length and time are and Vmo?/kgT, respectively,
of particles has lower free energy than a liquid state of uniwherekg is Boltzmann’'s constant and is the temperature
form density. In order to answer these questions, many ef:14]. It should be noted that the temperature is fixed as
forts have been devoted to real experiments, computer simlgT=1 in the course of the MD simulations.
lations, and theories in the last few decades. To begin with, we briefly explain our MD method to ob-

As one of the theories to study supercooled liquids andain glassy states of a one-component hard sphere system.
glasses, the density functional thegBFT) is recently gath- Employing the standard Alder and Wainwright algorithm
ering much attentiof3]. The DFT is now a conventional [15,16], we first generate the equilibrium liquid state at den-
method to study the freezir{g,5] and other transitions. The sjty'n=0.86. It is well known that the fluid system freezes at
glass transition has been investigated also based on the D"_F]-If—:o.94. To avoid crystallization and to obtain amorphous

by some worker§6-10. In the earlier workq6-10), the glassy states, Lubachevsky and Stillinger introduced a com-

random close packingRCP of hard spheres has been pro- ' . : .
. ) pressing(or quenching procedurd 13], in which they actu-
duced by Bennett's algorithifiL1] and the free energy from ally increased the diameter with a constant rate of expan-

the DFT with the input density field supplied by the RCP _. : ; : : . .
data has been calculated. Singhal. [6] showed that the f;?grd?snggﬁng s;?ulatlons. The dimensionless expanding

hard sphere glassy state becomes more stable than a uniform
liquid at the critical densitynga3=1.14, suggesting that do(t) m

there exists a kind of thermodynaniiater called a random =t Vit
first-order[12]) glass transition. Herey is the hard sphere B

?éi]rgflt(?arcj "’L”edrl Itsh;rt](esiggg'?r?(ar Ig%nslg)gr?fﬁgtggtisgr?;evn\:érg F')Sroandl“=0.01 is chosen in our simulations. From the initial

duced by a kind of aggregation method, we cannot study th(setaten—o.§6, W(_e expa}nded eaF:h sprlere with the Faend

dynamic aspects of the glass transition found by the energegould obtain various high-density states 0.86, 0.94, 1.02,

ics based on DFT. 1.06, 1.10, 1.14, 1.18, and 1.21, without crystallization.
The purpose of this paper is first to produce a supercooled L€t us first study the static structure of the system. For

and a glassy state for a one-component hard sphere systefiis purpose, the radial distribution functiggr), which is

relying on the uniform compression molecular dynamicsdefined by

(MD) method recently developed by Lubachevsky and Still- N

inger[13], and then to study both dynamic and static prop- g(r)= i S os(r+r—r,) @)

erties of the state. Especially from the particle configuration nN\ {7 o

()

is calculated, where represents the positions of thi par-
*Present address: Department of Physics, Kyoto Universityficle and(---) denotes the ensemble average over dlf;ferent
Kyoto 606-8502, Japan. Electronic address: kin@scphys.kyotoeonfigurations. In Fig. 1, we plotted(r) for densitiesn
u.ac.jp =0.94, 1.06, 1.14, and 1.21. It is noted that there is no sign
TElectronic address: munakata@amp.i.kyoto-u.ac.jp of crystallization, which would be reflected in the sharp
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FIG. 1. The radial distribution functiog(r) obtained forn FIG. 2. Intermediate scattering functién(q,t) at a wave num-
=0.94(solid line), 1.06(dashed ling 1.14(short dashed lineand  berg=2= for n=0.94 (solid line), 1.06 (dashed ling 1.14 (short
1.21 (dot-dashed line Inset: contact value of radial distribution dashed ling and 1.21(dot-dashed line The units ofq andt are

function g(r=1) as a function oh. The units off andn arec o ' (q=qo) andVmaZ/ksT (t=t\ksT/ma?), respectively.
(r=rl/o) ando~3 (n=nc?), respectively.

We now consider energetics of the system based on the
DFT and the configuration generated by the MD simulations.
For a practical calculation of the DFT, we employ the Ra-
makrishnan and YussoufRY) free energy functiond¥] be-

peaks ofg(r) at some characteristic lattice spacings. Instead
g(r) for higher density §= 1.14) shows splitting of the sec-

ond peak, which is a familiar characteristic of a glassy state. ise of its simplicity and physical clarity. The RY func-
of a simple liquid. Furthermore, we notice that the contacttional is given by

value g(r =1) shows an anomalous increase as the density

increasegsee the insgt which corresponds to the fact that F[n]=Fig+F2)+Funi, (4)

the pressure increases drastically with increasintnciden-

tally, it should be remarked that the forms gfr) agree Where

qualitatively with those illustrated in Ref11]. n(r)
We next consider the dynamic aspects of the hard sphere Fid:kBTf n(r)ln —}dr, (5)
glasses by calculating the incoherent intermediate scattering n
function F¢(q,t), which is defined by 1
LN F)=— EkBTf J [n(r)—n]C(|[r=r'H[n(r")—n]drdr’.
Fan={g 2 exdiaantt)]) . © (6)

j=1
t . . .
0 Here,F,qy andF,; represent the ideal gas contribution and
the excess free energy of the uniform liquid stafe)=n,
respectivelyF (2) represents the second-order term in the ex-

pansion around the uniform liquid state, thus all terms higher

where Ar;(t;tg) =r;j(t+1to) —r;(to) is the displacement vec-
tor of the jth particle in timet and (- - '>to represents an
average over initial timeg,. It is noted that(q,t) is one of
the standard quantities in the studies of dynamic properties 1000
of supercooled liquids and glassgk7,18. In Fig. 2, we |
plotted the decay profiles &f(q,t) at a dimensionless wave | -
numberq= 2 for n=0.94, 1.06, 1.14, and 1.21. We see in power-law fit
Fig. 2 that the relaxation of¢(q,t) atn=0.94 can be ex-

pressed by a simple exponential function. Beyond the density

n=1.06, howeverF(q,t) exhibits a two step, that is, fagt
and slowe, relaxation, which is often mentioned as a char-
acteristic sign of the slow relaxation in glass forming liquids.

At the highest density=1.21, theF4(q,t) does not show
any decaying behavidrl9]. One can define the structural

relaxation timer by F{(q=2m,7)=e "%, and this7 is plot- 0=—=5 : —
ted as a function of in Fig. 3. We notice in Fig. 3 that the n
relaxation timer shows a strong dependeince 0n~density, FIG. 3. Structural relaxation time as a function of density
which can be expressed by the power lamg (p—n)" 7  (closed circles Solid line represents power-law fiti§ yp—1) ~”
with ng yp=1.15 andy=1.31(solid line in Fig. 3. with N mp=1.15 andy=1.31.
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than second order are neglected. We note @) is the
direct correlation function of the uniform liquid with density
n [20].

In order to evaluate the free energy of the system, we
need the trial density fiela(r), for which we employ a
conventional Gaussian superposit[@s-10]; that is, the den-
sity field n(r) is expressed by a sum of Gaussians with the
centers located &\l sites{r;}, which are given by our MD
simulation,

Af(Q)

32 N

exp{—au—r?ﬂzglz(r;n), (7)

N o
n(r)=i21 (;

0 50 100

wherea ™1, a variational parameter for the calculation of the

free energy, is proportional to the mean square displacement
of each particle. Smalllarge) « represents the uniform lig- A —
uid (localized amorphoysstate. o
When « is very large,F;q is asymptotically represented } e

by [6] A

20{z)-3] o

For a smalla region, we calculated the integral E&) nu- S
merically. We confirmed thak;q approaches zero whem
—0 and noticed thaf;4 coincides with the value of Ed8) T T e T o000
for @=20. b

It is easy to see that the interaction tefp,; can be di-
vided into three parts d$]

BIETR-2E- 2
Mo
~OOR D

S~

Af (@)
7

Fid(a)~NkBT

_ (8) N

FIG. 4. Total free energy per particle relative to uniform liquid
Af() as a function of localization parameterfor a<100(a) and
1 =100 (b). The unit ofa is o2 (a=ac?).
Fiat(a)=— ENkBT[ Finta(a) + Fini (@) —n f C<r>dr],
(9) minimum at finitea, which represents an amorphous state,
appears as the density is increased. As mentioned in &ef.
where F; 1(a) represents the self-interaction of a single the local minimum appears as the result of the competition
Gaussian, between the ideal gasimple increasing function ak) and
the interaction terms. Figures 4 show that two local minima

Fine l(a):f f 2(r;0)C(|r—r'|)z(r";0)drdr’, (10)  are located av=13 and 1600 fon=1.14. Das and Kaur

' also observed two local minima adff («), which are called
andF;,; »(a) represents the interaction between the two dis-f[he weakly localized state for SW&” an.d '.[he highly local-
tinct Gaussians ized state for larger [9]. In addition, similar values for

have been reported in Refg6,9], which also use the RY

functional, in relation to the local minimum aff(«). As

Fint,Z(a):nJ’ g(fl)dHJ J z(r;0)C(|r—r'|) stated in Ref[9], the qualitative adequacy is ambiguous for
the highly localized state with very high value @fsince the

Xz(r";ry)drdr’. (11) RY form includes a perturbative expansion around the uni-

o _ i . o form state. In fact, based on the MD data, we estimatéor
The pair distribution functiorg(r) in this equation is deter- pjgh-density states by relating it to the plateau value of the
m'”e? tf_romfthet_MDC?;nulatmn. W|_'|th :jespect éo thgkdlrect time-dependent mean square displacement of each particle,
correlation functionC(r), we use Henderson-Grundke ex- . .~ _ ~ . L
pression forC(r), which is known to be reliable, though yielding &=50 for n=1.14, for mstance. From th!s, 't. IS

irical f’ hiah-density hard sohere i [éi] seen that the RY form does not give the proper estimation of
empirical, even for high-density hard sphere fquias|. the degree of localization compared with the results obtained
The total free energy per particle relative to uniform state,in earlier works[8,10]

Fia(@) +FE(a) In Fig. 5, we plotted the free energy differencis of the
Af(a)= (120 weakly and highly localized states as a function of density
From Fig. 5, we notice that the weakly localized state ap-

is calculated as a function of the localization parameier Pears forn=1.06 and the highly localized state appears for
(see Fig. 4 It is seen in Fig. 4 that the free energy local n=1.14. For higher densitien=1.15, it is seen that the

NkgT ’
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] In this paper, we reconsidered the DFT approach to the
\ glass transition in the hard sphere system, which was first
\ ] undertaken by Singhkt al. We obtained hard sphere glasses
\ by MD simulations without recourse to the Bennett algo-
o rithm, and the information on particle configurations pro-
\ duced by the MD simulations is used as input data when the
\ ] free energy is calculated based on the DFT. While only the
\ uniform liquid state is stable at low density, the free energy

-t N local minimum begins to appear at high density-1.06,
\ where our MD shows that two-step relaxation begins to ap-
AR pear. This metastable glassy state becomes stable relative to

1.05 1. 115 12 the uniform liquid atﬁg‘MD=1.15. Slow relaxation, as rep-
resented byF¢(q,t), turned out to be consistent with the
FIG. 5. Free energy differencesf of the weakly localized state energetics based on the DFT.
(solid line) and the highly localized statelashed lingas a function Before concluding this paper, we comment on recent de-
of densityn. velopments in the studies of the DFT. In recent years, the
so-called weighted density approximatigW?/DA) for the
highly localized state is more stable than the weakly localfree energy functional has been developa#,23 and the
ized state. Moreover, it is found in Fig. 5 that both weakly modified version has also been introdud€d]. Moreover,
and highly localized states become more stable than the unihe fundamental measure thedyMT) has been proposed
form state at arounag,DFTz 1.15, which is the liquid-glass [25] and is gathering considerable interest. It is well known
transition density from the energetics based on the DFT. Ihat, for highly localized states, such methods are more ac-
passing, we note that ograndom first orderglass transition curate than the RY fun_ctional. This is_ because the former
densityﬁg oer=1.15 is rather close to th51921.14, found employs a nonperturbatlon approximation, wherea}s the latter
in Ref. [6]. relies on a perturbation expansion around the uniform state.

Finally, we compare our results from the energetics abovéeveral w_orkers have_ _already investigated the glass transi-
with dynamic information supplied by our MD simulations. 1" Py using the modified WDA method and found that the
We find in Fig. 2 that the intermediate scattering functionmetastable localized state is locatedvat 100[8,10], in ac-
F«(q,t) begins to exhibit the two-step relaxation at densitycordance also with our MD results. Although the DFT based

N=1.06, which corresponds precisely to the density wheré®" 'Fhe RY fun_ctional is_ Sti". l.JserI be_cause (.)f it.s physical
the free energy local minimum begins to appear in our pFTelanty, gen_erallty, and §|mpI|C|ty,_we think that in view of the

. . T~ recent achievements, it is meaningful to employ the WDA or
(see Figs. # Turning to t[le relaxation time, we recall that FMT method in order to obtain improved results.
the density dependence ottould be described by the power  Furthermore, we expect that the present DFT approach
law (ng vp—n) ~ 7 with ng yp=1.15. This density happened will be applied to more complex systems. As a model of a
to coincide with the densitgy prr, beyond which the local-  glass forming liquid, the binary Lennard-Jor{é] or soft-
ized state is more stable than the uniform liquid in thecore systen{18] has been investigated by large scale MD
present DFT. From these results, we consider that the DF$imulations. Our approach can be readily applied to such a
based energetics and dynamic behaviors related to slow dgystem and would give new insights into the glass transition

Af

namics are well correlated with each other. from both thermodynamic and dynamic points of view.
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