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Glass transition of hard sphere systems: Molecular dynamics and density functional theory
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The glass transition of a hard sphere system is investigated within the framework of the density functional
theory ~DFT!. Molecular dynamics~MD! simulations are performed to study the dynamical behavior of the
system on the one hand and to provide the data to produce the density field for the DFT on the other hand.
Energy landscape analysis based on the DFT shows that there appears a metastable~local! free energy mini-
mum representing an amorphous state as the density is increased. This state turns out to become stable,
compared with the uniform liquid, at some density around which we also observe a sharp slowing down of the
a relaxation in the MD simulations.
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Understanding the universal mechanism of the glass tran-
sition is one of the major challenges in current condensed
matter physics. From a dynamical point of view, we would
like to know how a drastic slowing down near the transition
point ~temperature or density! and an eventual exceeding of
the relaxation time over the experimental time scale are re-
alized @1,2#. Energetically or statically, it is asked whether a
thermodynamic glassy state with an amorphous arrangement
of particles has lower free energy than a liquid state of uni-
form density. In order to answer these questions, many ef-
forts have been devoted to real experiments, computer simu-
lations, and theories in the last few decades.

As one of the theories to study supercooled liquids and
glasses, the density functional theory~DFT! is recently gath-
ering much attention@3#. The DFT is now a conventional
method to study the freezing@4,5# and other transitions. The
glass transition has been investigated also based on the DFT
by some workers@6–10#. In the earlier works@6–10#, the
random close packing~RCP! of hard spheres has been pro-
duced by Bennett’s algorithm@11# and the free energy from
the DFT with the input density field supplied by the RCP
data has been calculated. Singhet al. @6# showed that the
hard sphere glassy state becomes more stable than a uniform
liquid at the critical densityngs351.14, suggesting that
there exists a kind of thermodynamic~later called a random
first-order @12#! glass transition. Here,s is the hard sphere
diameter andn is the number density of the system. It is
remarked here that since the RCP configurations were pro-
duced by a kind of aggregation method, we cannot study the
dynamic aspects of the glass transition found by the energet-
ics based on DFT.

The purpose of this paper is first to produce a supercooled
and a glassy state for a one-component hard sphere system,
relying on the uniform compression molecular dynamics
~MD! method recently developed by Lubachevsky and Still-
inger @13#, and then to study both dynamic and static prop-
erties of the state. Especially from the particle configuration

data, we can discuss free energy within the DFT framework.
This MD approach, in conjunction with the DFT, enables us
to study both dynamic and static aspects of the transition in
contrast with Bennett’s approach.

Our system consists ofN51372 identical hard spheres
with massm and diameters in a cubic box of volumeV with
periodic boundary conditions. Throughout this paper, the
units of length and time ares andAms2/kBT, respectively,
wherekB is Boltzmann’s constant andT is the temperature
@14#. It should be noted that the temperature is fixed as
kBT51 in the course of the MD simulations.

To begin with, we briefly explain our MD method to ob-
tain glassy states of a one-component hard sphere system.
Employing the standard Alder and Wainwright algorithm
@15,16#, we first generate the equilibrium liquid state at den-
sity ñ50.86. It is well known that the fluid system freezes at
ñf.0.94. To avoid crystallization and to obtain amorphous
glassy states, Lubachevsky and Stillinger introduced a com-
pressing~or quenching! procedure@13#, in which they actu-
ally increased the diameters with a constant rate of expan-
sion during MD simulations. The dimensionless expanding
rateG is defined as

G5
ds~ t !

dt
A m

kBT
, ~1!

and G50.01 is chosen in our simulations. From the initial
stateñ50.86, we expanded each sphere with the rateG and
could obtain various high-density statesñ50.86, 0.94, 1.02,
1.06, 1.10, 1.14, 1.18, and 1.21, without crystallization.

Let us first study the static structure of the system. For
this purpose, the radial distribution functiong(r ), which is
defined by

g~r !5
1

nN K (
iÞ j

N

d~r1ri2rj!L , ~2!

is calculated, whereri represents the positions of thei th par-
ticle and^•••& denotes the ensemble average over different
configurations. In Fig. 1, we plottedg(r ) for densitiesñ
50.94, 1.06, 1.14, and 1.21. It is noted that there is no sign
of crystallization, which would be reflected in the sharp
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peaks ofg(r ) at some characteristic lattice spacings. Instead,
g(r ) for higher density (ñ>1.14) shows splitting of the sec-
ond peak, which is a familiar characteristic of a glassy state
of a simple liquid. Furthermore, we notice that the contact
value g( r̃ 51) shows an anomalous increase as the density
increases~see the inset!, which corresponds to the fact that
the pressure increases drastically with increasingñ. Inciden-
tally, it should be remarked that the forms ofg(r ) agree
qualitatively with those illustrated in Ref.@11#.

We next consider the dynamic aspects of the hard sphere
glasses by calculating the incoherent intermediate scattering
function Fs(q,t), which is defined by

Fs~q,t !5K 1

N (
j 51

N

exp@ iq•Dr j~ t;t0!#L
t0

, ~3!

whereDr j (t;t0)5r j (t1t0)2r j (t0) is the displacement vec-
tor of the j th particle in timet and ^•••& t0

represents an

average over initial timest0. It is noted thatFs(q,t) is one of
the standard quantities in the studies of dynamic properties
of supercooled liquids and glasses@17,18#. In Fig. 2, we
plotted the decay profiles ofFs(q,t) at a dimensionless wave
numberq̃52p for ñ50.94, 1.06, 1.14, and 1.21. We see in
Fig. 2 that the relaxation ofFs(q,t) at ñ50.94 can be ex-
pressed by a simple exponential function. Beyond the density
ñ51.06, however,Fs(q,t) exhibits a two step, that is, fastb
and slowa, relaxation, which is often mentioned as a char-
acteristic sign of the slow relaxation in glass forming liquids.
At the highest densityñ51.21, theFs(q,t) does not show
any decaying behavior@19#. One can define the structural
relaxation timet̃ by Fs(q̃52p,t̃)5e21, and thist̃ is plot-
ted as a function ofñ in Fig. 3. We notice in Fig. 3 that the
relaxation timet̃ shows a strong dependence on density,
which can be expressed by the power law (ñg,MD2ñ)2g

with ñg,MD.1.15 andg.1.31 ~solid line in Fig. 3!.

We now consider energetics of the system based on the
DFT and the configuration generated by the MD simulations.
For a practical calculation of the DFT, we employ the Ra-
makrishnan and Yussouff~RY! free energy functional@4# be-
cause of its simplicity and physical clarity. The RY func-
tional is given by

F@n#5Fid1Fint
(2)1Funi , ~4!

where

Fid5kBTE n~r!lnFn~r!

n Gdr, ~5!

Fint
(2)52

1

2
kBTE E @n~r!2n#C~ ur2r8u!@n~r8!2n#drdr8.

~6!

Here,Fid and Funi represent the ideal gas contribution and
the excess free energy of the uniform liquid staten(r)5n,
respectively.Fint

(2) represents the second-order term in the ex-
pansion around the uniform liquid state, thus all terms higher

FIG. 1. The radial distribution functiong( r̃ ) obtained for ñ
50.94 ~solid line!, 1.06~dashed line!, 1.14~short dashed line!, and
1.21 ~dot-dashed line!. Inset: contact value of radial distribution

function g( r̃ 51) as a function ofñ. The units ofr̃ and ñ are s

( r̃ 5r /s) ands23 (ñ5ns3), respectively.

FIG. 2. Intermediate scattering functionFs(q̃, t̃ ) at a wave num-

ber q̃52p for ñ50.94 ~solid line!, 1.06 ~dashed line!, 1.14 ~short
dashed line!, and 1.21~dot-dashed line!. The units ofq and t are

s21 (q̃5qs) andAms2/kBT ( t̃ 5tAkBT/ms2), respectively.

FIG. 3. Structural relaxation timet̃ as a function of densityñ

~closed circles!. Solid line represents power-law fit (ñg,MD2ñ)2g

with ñg,MD51.15 andg51.31.
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than second order are neglected. We note thatC(r) is the
direct correlation function of the uniform liquid with density
n @20#.

In order to evaluate the free energy of the system, we
need the trial density fieldn(r), for which we employ a
conventional Gaussian superposition@6–10#; that is, the den-
sity field n(r) is expressed by a sum of Gaussians with the
centers located atN sites$r i%, which are given by our MD
simulation,

n~r!5(
i 51

N S a

p D 3/2

exp@2a~r2ri
2!#[(

i 51

N

z~r;ri!, ~7!

wherea21, a variational parameter for the calculation of the
free energy, is proportional to the mean square displacement
of each particle. Small~large! a represents the uniform liq-
uid ~localized amorphous! state.

When a is very large,Fid is asymptotically represented
by @6#

Fid~a!;NkBTF H 3

2
lnS a

p D2
3

2J 2 ln nG . ~8!

For a smalla region, we calculated the integral Eq.~5! nu-
merically. We confirmed thatFid approaches zero whenã
→0 and noticed thatFid coincides with the value of Eq.~8!

for ã*20.
It is easy to see that the interaction termFint can be di-

vided into three parts as@6#

Fint
(2)~a!52

1

2
NkBTHFint,1~a!1Fint,2~a!2nE C~r !drJ ,

~9!

where Fint,1(a) represents the self-interaction of a single
Gaussian,

Fint,1~a!5E E z~r;0!C~ ur2r8u!z~r8;0!drdr8, ~10!

andFint,2(a) represents the interaction between the two dis-
tinct Gaussians,

Fint,2~a!5nE g~r 1!dr1E E z~r;0!C~ ur2r8u!

3z~r8;r1!drdr8. ~11!

The pair distribution functiong(r ) in this equation is deter-
mined from the MD simulation. With respect to the direct
correlation functionC(r ), we use Henderson-Grundke ex-
pression forC(r ), which is known to be reliable, though
empirical, even for high-density hard sphere liquids@21#.

The total free energy per particle relative to uniform state,

D f ~a!5
Fid~a!1Fint

(2)~a!

NkBT
, ~12!

is calculated as a function of the localization parameterã
~see Fig. 4!. It is seen in Fig. 4 that the free energy local

minimum at finitea, which represents an amorphous state,
appears as the density is increased. As mentioned in Ref.@6#,
the local minimum appears as the result of the competition
between the ideal gas~simple increasing function ofa) and
the interaction terms. Figures 4 show that two local minima
are located atã.13 and 1600 forñ51.14. Das and Kaur
also observed two local minima ofD f (a), which are called
the weakly localized state for smalla and the highly local-
ized state for largea @9#. In addition, similar values fora
have been reported in Refs.@6,9#, which also use the RY
functional, in relation to the local minimum ofD f (a). As
stated in Ref.@9#, the qualitative adequacy is ambiguous for
the highly localized state with very high value ofa since the
RY form includes a perturbative expansion around the uni-
form state. In fact, based on the MD data, we estimateda for
high-density states by relating it to the plateau value of the
time-dependent mean square displacement of each particle,
yielding ã.50 for ñ51.14, for instance. From this, it is
seen that the RY form does not give the proper estimation of
the degree of localization compared with the results obtained
in earlier works@8,10#.

In Fig. 5, we plotted the free energy differencesD f of the
weakly and highly localized states as a function of densityñ.
From Fig. 5, we notice that the weakly localized state ap-
pears forñ>1.06 and the highly localized state appears for
ñ>1.14. For higher densitiesñ*1.15, it is seen that the

FIG. 4. Total free energy per particle relative to uniform liquid

D f (ã) as a function of localization parameterã for ã<100 ~a! and

ã>100 ~b!. The unit ofã is s22 (ã5as2).
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highly localized state is more stable than the weakly local-
ized state. Moreover, it is found in Fig. 5 that both weakly
and highly localized states become more stable than the uni-
form state at aroundñg,DFT.1.15, which is the liquid-glass
transition density from the energetics based on the DFT. In
passing, we note that our~random first order! glass transition
densityñg,DFT51.15 is rather close to thatñg51.14, found
in Ref. @6#.

Finally, we compare our results from the energetics above
with dynamic information supplied by our MD simulations.
We find in Fig. 2 that the intermediate scattering function
Fs(q,t) begins to exhibit the two-step relaxation at density
ñ.1.06, which corresponds precisely to the density where
the free energy local minimum begins to appear in our DFT
~see Figs. 4!. Turning to the relaxation timet̃, we recall that
the density dependence oft̃ could be described by the power
law (ñg,MD2ñ)2g with ñg,MD.1.15. This density happened
to coincide with the densityng,DFT , beyond which the local-
ized state is more stable than the uniform liquid in the
present DFT. From these results, we consider that the DFT
based energetics and dynamic behaviors related to slow dy-
namics are well correlated with each other.

In this paper, we reconsidered the DFT approach to the
glass transition in the hard sphere system, which was first
undertaken by Singhet al. We obtained hard sphere glasses
by MD simulations without recourse to the Bennett algo-
rithm, and the information on particle configurations pro-
duced by the MD simulations is used as input data when the
free energy is calculated based on the DFT. While only the
uniform liquid state is stable at low density, the free energy
local minimum begins to appear at high densityñ.1.06,
where our MD shows that two-step relaxation begins to ap-
pear. This metastable glassy state becomes stable relative to
the uniform liquid atñg,MD51.15. Slow relaxation, as rep-
resented byFs(q,t), turned out to be consistent with the
energetics based on the DFT.

Before concluding this paper, we comment on recent de-
velopments in the studies of the DFT. In recent years, the
so-called weighted density approximation~WDA! for the
free energy functional has been developed@22,23# and the
modified version has also been introduced@24#. Moreover,
the fundamental measure theory~FMT! has been proposed
@25# and is gathering considerable interest. It is well known
that, for highly localized states, such methods are more ac-
curate than the RY functional. This is because the former
employs a nonperturbation approximation, whereas the latter
relies on a perturbation expansion around the uniform state.
Several workers have already investigated the glass transi-
tion by using the modified WDA method and found that the
metastable localized state is located atã.100 @8,10#, in ac-
cordance also with our MD results. Although the DFT based
on the RY functional is still useful because of its physical
clarity, generality, and simplicity, we think that in view of the
recent achievements, it is meaningful to employ the WDA or
FMT method in order to obtain improved results.

Furthermore, we expect that the present DFT approach
will be applied to more complex systems. As a model of a
glass forming liquid, the binary Lennard-Jones@17# or soft-
core system@18# has been investigated by large scale MD
simulations. Our approach can be readily applied to such a
system and would give new insights into the glass transition
from both thermodynamic and dynamic points of view.

@1# J. Jäckle, Rep. Prog. Phys.49, 171 ~1986!.
@2# M.D. Ediger, C.A. Angell, and S.R. Nagel, J. Phys. Chem.100,

13 200~1996!.
@3# For reviews, see A.D.J. Haymet, Annu. Rev. Phys. Chem.38,

89 ~1987!; D.W. Oxtoby, in Liquid, Freezing, and the Glass
Transition, edited by J.P. Hansen, D. Levesque, and J. Zinn-
Justin~Elsevier, New York, 1990!.

@4# T.V. Ramakrishnan and M. Yussouff, Phys. Rev. B19, 2775
~1979!.

@5# A.D. Haymet and D.W. Oxtoby, J. Chem. Phys.74, 2559
~1981!; D.W. Oxtoby and A.D. Haymet,ibid. 76, 6262~1982!.

@6# Y. Singh, J.P. Stoessel, and P.G. Wolynes, Phys. Rev. Lett.54,
1059 ~1985!.

@7# M. Baus and J.L. Colot, J. Phys. C19, L135 ~1986!.
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