24 research outputs found

    Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization

    No full text
    Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of CO2, has been considered an attractive green catalyst for bioinspired CO2 capture and utilization. The construction and utilization of a CO2-capturing whole-cell biocatalyst offers potential economic viability for industrial applications. The recently engineered whole-cell biocatalyst with periplasmic CA from Hydrogenovibrio marinas showed superior activity and stability over other systems. On the other hand, it was prone to enzyme leakage and cell lysis, necessitating whole-cell immobilization. Herein, the periplasmic whole-cell catalyst was entrapped in polyurethane foam by a facile one-step copolymerization method. The functional immobilization of cells was achieved with an immobilization efficiency of 3.4 %, which was 16-fold higher than that for free enzymes. The catalytic activity increased linearly depending on the cell density and the number of cut pieces of the immobilized catalyst. Notably, the reusability of the immobilized whole-cell catalyst was excellent, showing no apparent decrease in activity after nine reuses. Unexpectedly, the entrapment of cells in polyurethane foam was not effective for the thermal stabilization of enzymes presumably due to the lack of a direct covalent linkage of enzyme to the polymeric matrix. The rate of CO2 capture in the designed reactor was accelerated by 80 % using the immobilized biocatalyst. We expect that the immobilized whole-cell biocatalyst can be used as an efficient and economic biocatalyst for practical CO2 capture and utilization, and the performance of the system would be greatly improved by optimizing various parameters in the construction of the catalyst.11Nsciescopu

    A proposed set of metrics for standardized outcome reporting in the management of low back pain

    No full text
    Background and purpose - Outcome measurement has been shown to improve performance in several fields of healthcare. This understanding has driven a growing interest in value-based healthcare, where value is defined as outcomes achieved per money spent. While low back pain (LBP) constitutes an enormous burden of disease, no universal set of metrics has yet been accepted to measure and compare outcomes. Here, we aim to define such a set. Patients and methods - An international group of 22 specialists in several disciplines of spine care was assembled to review literature and select LBP outcome metrics through a 6-round modified Delphi process. The scope of the outcome set was degenerative lumbar conditions. Results - Patient-reported metrics include numerical pain scales, lumbar-related function using the Oswestry disability index, health-related quality of life using the EQ-5D-3L questionnaire, and questions assessing work status and analgesic use. Specific common and serious complications are included. Recommended follow-up intervals include 6, 12, and 24 months after initiating treatment, with optional follow-up at 3 months and 5 years. Metrics for risk stratification are selected based on preexisting tools. Interpretation - The outcome measures recommended here are structured around specific etiologies of LBP, span a patient's entire cycle of care, and allow for risk adjustment. Thus, when implemented, this set can be expected to facilitate meaningful comparisons and ultimately provide a continuous feedback loop, enabling ongoing improvements in quality of care. Much work lies ahead in implementation, revision, and validation of this set, but it is an essential first step toward establishing a community of LBP providers focused on maximizing the value of the care we deliver
    corecore