29 research outputs found

    Adipocyte autophagy limits gut inflammation by controlling oxylipin and IL-10

    Get PDF
    Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7-deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation

    Recombinant, catalytically inactive juvenile hormone esterase enhances efficacy of baculovirus insecticides

    No full text
    The insecticidal efficacy of baculoviruses can be enhanced by engineering the viral genome to express proteins that disrupt the physiology of the host insect. Here we describe the development of a genetically engineered Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) which expresses a modified form of juvenile hormone esterase (JHE). Previously, two viruses expressing different modified JHEs were found to have a greater insecticidal effect on larvae of Trichoplusia ni and Heliothis virescens than a virus expressing wild-type JHE. To study a possible synergistic effect, the distinct mutations in the modified JHEs were combined in a new JHE construct. Two lysine residues were replaced with arginine residues to reduce the efficiency of lysosomal targeting (JHE-KK) and the catalytic serine was replaced with glycine, which eliminated catalytic activity (JHE-SG). The modified JHE, JHE-KSK, was expressed in a recombinant baculovirus, AcJHE-KSK. Larvae of H. virescens infected with this recombinant virus caused 44␕ess feeding damage to lettuce than larvae infected with the wild-type AcMNPV. However, AcJHE-KSK did not have significantly improved insecticidal properties over the parent viruses AcJHE-KK and AcJHE-SG, suggesting that the separate mutations have no major synergistic effect. Infection with a control recombinant baculovirus expressing JHE with the same lysine to arginine conversions and in which a catalytic histidine was converted to lysine (AcJHE-KHK) did not reduce feeding damage compared with that caused by larvae infected with AcMNPV

    Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol

    Get PDF
    Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. Overall, these data indicate a therapeutically important endothelial protective effect of erythritol under hyperglycemic conditions

    High Salt Intake Increases Blood Pressure in Normal Rats: Putative Role of 20-HETE and No Evidence on Changes in Renal Vascular Reactivity

    No full text
    Background/Aims. High salt (HS) intake may elevate blood pressure (BP), also in animals without genetic salt sensitivity. The development of salt-dependent hypertension could be mediated by endogenous vasoactive agents; here we examined the role of vasodilator epoxyeicosatrienoic acids (EETs) and vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Methods. In conscious Wistar rats on HS diet systolic BP (SBP) was examined after chronic elevation of EETs using 4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB), a blocker of soluble epoxide hydrolase, or after inhibition of 20-HETE with 1-aminobenzotriazole (ABT). Thereafter, in acute experiments the responses of renal artery blood flow (Transonic probe) and renal regional perfusion (laser-Doppler) to intrarenal acetylcholine (ACh) or norepinephrine were determined. Results. HS diet increased urinary 20-HETE excretion. The SBP increase was not reduced by c-AUCB but prevented by ABT until day 5 of HS exposure. Renal vasomotor responses to ACh or norepinephrine were similar on standard and HS diet. ABT but not c-AUCB abolished the responses to ACh. Conclusions. 20-HETE seems to mediate the early-phase HS diet-induced BP increase while EETs are not engaged in the process. Since HS exposure did not alter renal vasodilator responses to Ach, endothelial dysfunction is not a critical factor in the mechanism of salt-induced blood pressure elevation
    corecore