599 research outputs found
U-Pn geochronology of deformed metagranites in central Sutherland, Scotland: evidence for widespread late Silurian metamorphism and ductile deformation of the Moine Supergroup during the Caledonian orogeny
Within the Caledonides of central Sutherland, Scotland, the Neoproterozoic metasedimentary rocks of the Moine Supergroup record NW-directed D2 ductile thrusting and nappe assembly, accompanied by widespread tight-to-isoclinal folding and amphibolite-facies metamorphism. A series of metagranite sheets which were emplaced and penetratively deformed during D2 have been dated using SHRIMP UâPb geochronology. Zircon ages of 424 8 Ma (Vagastie Bridge granite), 420 6 Ma (Klibreck granite) and 429 11 Ma (Strathnaver granite) are interpreted to date emplacement, and hence regional D2 deformation, during
mid- to late Silurian time. Titanite ages of 413 3 Ma (Vagastie Bridge granite) and 416 3 Ma (Klibreck granite) are thought to date post-metamorphic cooling through a blocking temperature of c. 550â 500 8C. A mid- to late Silurian age for D2 deformation supports published models that have viewed the internal ductile thrusts of this part of the orogen as part of the same kinematically linked system of forelandpropagating thrusts as the marginal Moine Thrust Zone. The new data contrast with previous interpretations that have viewed the dominant structures and metamorphic assemblages within the Moine Supergroup as having formed during the early to mid-Ordovician Grampian arcâcontinent orogeny. The mid-to late Silurian D2 nappe stacking event in Sutherland is probably a result of the collision of Baltica with the Scottish segment of Laurentia
Deficit irrigation effects on adjunct and all-malt barley yield and quality
Semi-arid regions are reliant on supplemental irrigation to produce large-yielding and high-quality malt barley (Hordeum vulgare, L.). Current and widespread drought in the western United States is of particular concern as surface and ground water reductions are occurring that affect irrigation water availability. Implementing a seasonal deficit of water compared to evapotranspiration (ET) is a potential mechanism to reduce water usage if yield and quality can be maintained. Research was conducted at the University of Idaho Aberdeen R&E Center, Aberdeen, Idaho on the effects of deficit irrigation on yield, grain quality, and malt characteristics of barley. Five genotypes were selected to represent those used for large-scale adjunct brewing and those targeted at the all-malt craft industry. Irrigation was managed at three rates (100%, 75%, and 50%) of estimated crop evapotranspiration (ETc) using a sprinkler irrigation system. Total aboveground dry matter (TDM) was not affected by irrigation until soft dough (Feekes 11.2; F11.2). Yield was similar within a genotype with irrigation reduction from 100% ETc to 75% ETc. Averaged across genotypes, yields were 6936 kg ha-1 at 100% ETc and 6297 kg ha-1 at 75% ETc. At 75% ETc, protein was just below the adjunct target of 130 g kg-1, excluding Harrington, and no genotype stayed below 120 g kg-1, the all-malt target. Deficit irrigation is promising, particularly for adjunct brewing; however, expected changes to malting quality profiles must be understood and varietal selection, breeding advancements, and/or changes to malting criteria may be needed for successful implementation of deficit irrigation
Algebro-geometric approach in the theory of integrable hydrodynamic type systems
The algebro-geometric approach for integrability of semi-Hamiltonian
hydrodynamic type systems is presented. This method is significantly simplified
for so-called symmetric hydrodynamic type systems. Plenty interesting and
physically motivated examples are investigated
ariable thermal crop water stress index reference temperatures for irrigated spring malt barley in a semi-arid climate
Application of canopy temperature-based crop water stress index (CWSI) for monitoring plant water stress and scheduling irrigation requires reliable estimation of well-watered (TLL) and non-transpiring (TUL) canopy temperatures under identical climatic conditions. A 3-year field study was conducted to develop and evaluate the use of data driven models to estimate TLL and TUL of irrigated spring malt barley. Five irrigation rates with four replicates each were used: full irrigation (FIT), 75, 50 and 25% of FIT and no irrigation. Three replicate continuous canopy temperatures measurements were taken in each irrigation treatment starting the first week in June ending in mid-July along with meteorological conditions. A feed forward neural network (NN) model was used to predict TLL between 13:00 and 15:00 MDT based on model inputs: solar radiation, air temperature, relative humidity, and wind speed for the same period. A physical model calibrated to the data set was used to estimate TUL. The NN model predicted TLL was well correlated with measured TLL (R2 = 0.99) with root mean square error 0.89 degrees C and mean absolute error 0.70 degrees C. There were significant differences in calculated daily average CWSI between irrigation treatments. Relative evapotranspiration, relative malt barley seed yield and percent plump kernels were negatively correlated with season average CWSI. Malt barley seed test weight was positively correlated with season average CWSI. The relationship between daily average CWSI and fraction available soil water was well described by a two-parameter exponential decay function (R2 = 0.72). These results indicate applicability of data driven models for computing CWSI of irrigated spring malt barley in a semi-arid environment and demonstrate malt barley yield response to crop water stress
Searches for solar-influenced radioactive decay anomalies using Spacecraft RTGs
Experiments showing a seasonal variation of the nuclear decay rates of a
number of different nuclei, and decay anomalies apparently related to solar
flares and solar rotation, have suggested that the Sun may somehow be
influencing nuclear decay processes. Recently, Cooper searched for such an
effect in Pu nuclei contained in the radioisotope thermoelectric
generators (RTGs) on board the Cassini spacecraft. In this paper we modify and
extend Cooper's analysis to obtain constraints on anomalous decays of
Pu over a wider range of models, but these limits cannot be applied to
other nuclei if the anomaly is composition-dependent. We also show that it may
require very high sensitivity for terrestrial experiments to discriminate among
some models if such a decay anomaly exists, motivating the consideration of
future spacecraft experiments which would require less precision.Comment: 8 pages, 4 figures (to appear in Astroparticle Physics
Simultaneous solution of Kompaneets equation and Radiative Transfer equation in the photon energy range 1 - 125 KeV
Radiative transfer equation in plane parallel geometry and Kompaneets
equation is solved simultaneously to obtain theoretical spectrum of 1-125 KeV
photon energy range. Diffuse radiation field is calculated using
time-independent radiative transfer equation in plane parallel geometry, which
is developed using discrete space theory (DST) of radiative transfer in a
homogeneous medium for different optical depths. We assumed free-free emission
and absorption and emission due to electron gas to be operating in the medium.
The three terms and where is photon phase density and , in Kompaneets equation and those due to
free-free emission are utilized to calculate the change in the photon phase
density in a hot electron gas. Two types of incident radiation are considered:
(1) isotropic radiation with the modified black body radiation [1] and
(2) anisotropic radiation which is angle dependent. The emergent radiation at
and reflected radiation are calculated by using the
diffuse radiation from the medium. The emergent and reflected radiation contain
the free-free emission and emission from the hot electron gas. Kompaneets
equation gives the changes in photon phase densities in different types of
media. Although the initial spectrum is angle dependent, the Kompaneets
equation gives a spectrum which is angle independent after several Compton
scattering times.Comment: 31 pages, 8 figures, Accepte
A real quaternion spherical ensemble of random matrices
One can identify a tripartite classification of random matrix ensembles into
geometrical universality classes corresponding to the plane, the sphere and the
anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the
anti-sphere with truncations of unitary matrices. This paper focusses on an
ensemble corresponding to the sphere: matrices of the form \bY= \bA^{-1} \bB,
where \bA and \bB are independent matrices with iid standard
Gaussian real quaternion entries. By applying techniques similar to those used
for the analogous complex and real spherical ensembles, the eigenvalue jpdf and
correlation functions are calculated. This completes the exploration of
spherical matrices using the traditional Dyson indices .
We find that the eigenvalue density (after stereographic projection onto the
sphere) has a depletion of eigenvalues along a ring corresponding to the real
axis, with reflective symmetry about this ring. However, in the limit of large
matrix dimension, this eigenvalue density approaches that of the corresponding
complex ensemble, a density which is uniform on the sphere. This result is in
keeping with the spherical law (analogous to the circular law for iid
matrices), which states that for matrices having the spherical structure \bY=
\bA^{-1} \bB, where \bA and \bB are independent, iid matrices the
(stereographically projected) eigenvalue density tends to uniformity on the
sphere.Comment: 25 pages, 3 figures. Added another citation in version
Определение оптимальных параметров источника рентгеновского излучения на базе малогабаритного ускорителя электронов
Проведено моделирование спектров рентгеновского излучения, генерируемого электронами с энергией 4…10 МэВ в мишенях из различных материалов и разной толщины. Определены оптимальные параметры мишени-конвертора для использования ее в медицинских источниках монохроматического рентгеновского излучения на базе малогабаритных электронных ускорителей. Проведены оценки интенсивности излучения и сравнение источников на базе разных ускорителей
Routine activities and proactive police activity: a macro-scale analysis of police searches in London and New York City
This paper explored how city-level changes in routine activities were associated with changes in frequencies of police searches using six years of police records from the London Metropolitan Police Service and the New York City Police Department. Routine activities were operationalised through selecting events that potentially impacted on (a) the street population, (b) the frequency of crime or (c) the level of police activity. OLS regression results indicated that routine activity variables (e.g. day of the week, periods of high demand for police service) can explain a large proportion of the variance in search frequency throughout the year. A complex set of results emerged, revealing cross-national dissimilarities and the differential impact of certain activities (e.g. public holidays). Importantly, temporal frequencies in searches are not reducible to associations between searches and recorded street crime, nor changes in on-street population. Based on the routine activity approach, a theoretical police-action model is proposed
- …