10,892 research outputs found

    Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    Get PDF
    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation

    Clarification of Failure Terminology by Examining a Generic Failure Development Process

    Get PDF
    One key objective of good plant asset management is to prevent undesirable failure that may cause loss of life, destruction of asset, loss of economic benefit or damage to the environment. In order to deploy strategies that prevent failure, one needs to first understand the processes leading to failure, and definitions used for describing the failure of physical assets. A number of different definitions for the same terms related to equipment failure can be found in the literature. The looseness of terminology and often overlapping shades of meaning lead to ambiguity and confusion. This paper aims to offer clearer definitions derived from examining a generic failure development process exhibited by physical assets (herein referred to as “equipment”)

    Unusual Dynamical Scaling in the Spatial Distribution of Persistent Sites in 1D Potts Models

    Full text link
    The distribution, n(k,t), of the interval sizes, k, between clusters of persistent sites in the dynamical evolution of the one-dimensional q-state Potts model is studied using a combination of numerical simulations, scaling arguments, and exact analysis. It is shown to have the scaling form n(k,t) = t^{-2z} f(k/t^z), with z= max(1/2,theta), where theta(q) is the persistence exponent which characterizes the fraction of sites which have not changed their state up to time t. When theta > 1/2, the scaling length, t^theta, for the interval-size distribution is larger than the coarsening length scale, t^{1/2}, that characterizes spatial correlations of the Potts variables.Comment: RevTex, 11 page

    VHE Gamma-ray Afterglow Emission from Nearby GRBs

    Full text link
    Gamma-ray Bursts (GRBs) are among the potential extragalactic sources of very-high-energy (VHE) gamma-rays. We discuss the prospects of detecting VHE gamma-rays with current ground-based Cherenkov instruments during the afterglow phase. Using the fireball model, we calculate the synchrotron self-Compton (SSC) emission from forward-shock electrons. The modeled results are compared with the observational afterglow data taken with and/or the sensitivity level of ground-based VHE instruments (e.g. STACEE, H.E.S.S., MAGIC, VERITAS, and Whipple). We find that modeled SSC emission from bright and nearby bursts such as GRB 030329 are detectable by these instruments even with a delayed observation time of ~10 hours.Comment: Proceeding of "Heidelberg International Symposium on High Energy Gamma-Ray Astronomy", held in Heidelberg, 7-11 July 2008, submitted to AIP Conference Proceedings. 4 pages, 3 figures, 1 tabl

    DESIGN, CONSTRUCTION AND PERFORMANCE EVALUATION OF A COCO PEAT BLOCK MAKING MACHINE

    Get PDF
    The coco peat block making machine is comprised of a compressing rod assembly, mold box, prime mover, and frame with a pair of wheels enabling easier transportability of the machine. Coco peat of different moisture contents (11-14%; 15-18%; and 19-22%) were compressed at different compressing ratios (4:1; 5:1; and 6:1) using the designed and fabricated machine. The study was conducted to (1) evaluate the blocking capacity; (2) establish the moisture content range and compression ratio of blocking; (3) determine the bulk density of the blocked coco peat; and (4) perform a simple cost analysis of the machine. The results showed that the moisture content range and compression ratio have significant effect on the coco peat block recovery and blocking capacity. The operating parameters in blocking the coco peat were established at a moisture content of 15-18% MC and compression ratio of 4:1 giving a blocking capacity of 68.32 blocks per hour

    Simultaneous repolarization of two 10-Gb/s polarization-scrambled wavelength channels using a mutual-injection-locked laser diode

    Get PDF
    Author name used in this publication: W. H. ChungAuthor name used in this publication: P. K. A. WaiAuthor name used in this publication: H. Y. TamAuthor name used in this publication: M. S. Demokan2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Series Expansion Calculation of Persistence Exponents

    Full text link
    We consider an arbitrary Gaussian Stationary Process X(T) with known correlator C(T), sampled at discrete times T_n = n \Delta T. The probability that (n+1) consecutive values of X have the same sign decays as P_n \sim \exp(-\theta_D T_n). We calculate the discrete persistence exponent \theta_D as a series expansion in the correlator C(\Delta T) up to 14th order, and extrapolate to \Delta T = 0 using constrained Pad\'e approximants to obtain the continuum persistence exponent \theta. For the diffusion equation our results are in exceptionally good agreement with recent numerical estimates.Comment: 5 pages; 5 page appendix containing series coefficient

    Origin of complexity in multicellular organisms

    Full text link
    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a `cooperative' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave 'selfishly'. The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multi-potency of stem cells.Comment: 6 pages, 2 figures, Physical Review Letters, 84, 6130, (2000

    The comparative clinical course of pregnant and non-pregnant women hospitalised with influenza A(H1N1)pdm09 infection

    Get PDF
    Introduction: The Influenza Clinical Information Network (FLU-CIN) was established to gather detailed clinical and epidemiological information about patients with laboratory confirmed A(H1N1)pdm09 infection in UK hospitals. This report focuses on the clinical course and outcomes of infection in pregnancy.Methods: A standardised data extraction form was used to obtain detailed clinical information from hospital case notes and electronic records, for patients with PCR-confirmed A(H1N1)pdm09 infection admitted to 13 sentinel hospitals in five clinical 'hubs' and a further 62 non-sentinel hospitals, between 11th May 2009 and 31st January 2010.Outcomes were compared for pregnant and non-pregnant women aged 15-44 years, using univariate and multivariable techniques.Results: Of the 395 women aged 15-44 years, 82 (21%) were pregnant; 73 (89%) in the second or third trimester. Pregnant women were significantly less likely to exhibit severe respiratory distress at initial assessment (OR?=?0.49 (95% CI: 0.30-0.82)), require supplemental oxygen on admission (OR?=?0.40 (95% CI: 0.20-0.80)), or have underlying co-morbidities (p-trend <0.001). However, they were equally likely to be admitted to high dependency (Level 2) or intensive care (Level 3) and/or to die, after adjustment for potential confounders (adj. OR?=?0.93 (95% CI: 0.46-1.92). Of 11 pregnant women needing Level 2/3 care, 10 required mechanical ventilation and three died.Conclusions: Since the expected prevalence of pregnancy in the source population was 6%, our data suggest that pregnancy greatly increased the likelihood of hospital admission with A(H1N1)pdm09. Pregnant women were less likely than non-pregnant women to have respiratory distress on admission, but severe outcomes were equally likely in both groups
    corecore