42,036 research outputs found

    Large Magneto-Dielectric Effects in Orthorhombic HoMnO3 and YMnO3

    Full text link
    We have found a remarkable increase (up to 60 %) of the dielectric constant with the onset of magnetic order at 42 K in the metastable orthorhombic structures of YMnO3 and HoMnO3 that proves the existence of a strong magneto-dielectric coupling in the compounds. Magnetic, dielectric, and thermodynamic properties show distinct anomalies at the onset of the incommensurate magnetic order and thermal hysteresis effects are observed around the lock-in transition temperature at which the incommensurate magnetic order locks into a temperature independent wave vector. The orders of Mn3+ spins and Ho3+ moments both contribute to the magneto-dielectric coupling. A large magneto-dielectric effect was observed in HoMnO3 at low temperature where the dielectric constant can be tuned by an external magnetic field resulting in a decrease of up to 8 % at 7 Tesla. By comparing data for YMnO3 and HoMnO3 the contributions to the coupling between the dielectric response and Mn and Ho magnetic orders are separated.Comment: revised manuscrip

    Site-dependent charge transfer at the Pt(111)-ZnPc interface and the effect of iodine

    Get PDF
    The electronic structure of ZnPc, from sub-monolayers to thick films, on bare and iodated Pt(111) is studied by means of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM). Our results suggest that at low coverage ZnPc lies almost parallel to the Pt(111) substrate, in a non-planar configuration induced by Zn-Pt attraction, leading to an inhomogeneous charge distribution within the molecule and charge transfer to the molecule. ZnPc does not form a complete monolayer on the Pt surface, due to a surface-mediated intermolecular repulsion. At higher coverage ZnPc adopts a tilted geometry, due to a reduced molecule-substrate interaction. Our photoemission results illustrate that ZnPc is practically decoupled from Pt, already from the second layer. Pre-deposition of iodine on Pt hinders the Zn-Pt attraction, leading to a non-distorted first layer ZnPc in contact with Pt(111)-I (3Ă—3)\left(\sqrt{3}\times\sqrt{3}\right) or Pt(111)-I (7Ă—7)\left(\sqrt{7}\times\sqrt{7}\right), and a more homogeneous charge distribution and charge transfer at the interface. On increased ZnPc thickness iodine is dissolved in the organic film where it acts as an electron acceptor dopant.Comment: 12 pages, 9 figure

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    Meta-Aggregating Networks for Class-Incremental Learning

    Get PDF
    • …
    corecore