13,564 research outputs found

    Wave propagation and earth satellite radio emission studies

    Get PDF
    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry

    Pattern Competition in the Photorefractive Semiconductors

    Full text link
    We analytically study the photorefractive Gunn effect in n-GaAs subjected to two external laser beams which form a moving interference pattern (MIP) in the semiconductor. When the intensity of the spatially independent part of the MIP, denoted by I0I_0, is small, the system has a periodic domain train (PDT), consistent with the results of linear stability analysis. When I0I_0 is large, the space-charge field induced by the MIP will compete with the PDT and result in complex dynamics, including driven chaos via quasiperiodic route

    Heat transfer in rotating serpentine passages with trips normal to the flow

    Get PDF
    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction

    Heat transfer in rotating serpentine passages with trips skewed to the flow

    Get PDF
    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips, skewed at 45 deg to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and buoyancy, decreased to as low as 40 percent of the value without rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall models. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer in models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design information

    Heat transfer in rotating serpentine passages with selected model orientation for smooth or skewed trip walls

    Get PDF
    Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    On the Mass-Period Distributions and Correlations of Extrasolar Planets

    Full text link
    In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.Comment: to be published in AJ, tentatively in December 200

    Dimensionality of superconductivity in the infinite-layer high-temperature cuprate Sr0.9M0.1CuO2 (M = La, Gd)

    Get PDF
    The high magnetic field phase diagram of the electron-doped infinite layer high-temperature superconducting (high-T_c) compound Sr_{0.9}La_{0.1}CuO_2 was probed by means of penetration depth and magnetization measurements in pulsed fields to 60 T. An anisotropy ratio of 8 was detected for the upper critical fields with H parallel (H_{c2}^{ab}) and perpendicular (H_{c2}^c) to the CuO_2 planes, with H_{c2}^{ab} extrapolating to near the Pauli paramagnetic limit of 160 T. The longer superconducting coherence length than the lattice constant along the c-axis indicates that the orbital degrees of freedom of the pairing wavefunction are three dimensional. By contrast, low-field magnetization and specific heat measurements of Sr_{0.9}Gd_{0.1}CuO_2 indicate a coexistence of bulk s-wave superconductivity with large moment Gd paramagnetism close to the CuO_2 planes, suggesting a strong confinement of the spin degrees of freedom of the Cooper pair to the CuO_2 planes. The region between H_{c2}^{ab} and the irreversibility line in the magnetization, H_{irr}^{ab}, is anomalously large for an electron-doped high-T_c cuprate, suggesting the existence of additional quantum fluctuations perhaps due to a competing spin-density wave order.Comment: 4 pages, 4 figures, submitted to Phys. Rev. B, Rapid Communications (2004). Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Scattering of slow-light gap solitons with charges in a two-level medium

    Full text link
    The Maxwell-Bloch system describes a quantum two-level medium interacting with a classical electromagnetic field by mediation of the the population density. This population density variation is a purely quantum effect which is actually at the very origin of nonlinearity. The resulting nonlinear coupling possesses particularly interesting consequences at the resonance (when the frequency of the excitation is close to the transition frequency of the two-level medium) as e.g. slow-light gap solitons that result from the nonlinear instability of the evanescent wave at the boundary. As nonlinearity couples the different polarizations of the electromagnetic field, the slow-light gap soliton is shown to experience effective scattering whith charges in the medium, allowing it for instance to be trapped or reflected. This scattering process is understood qualitatively as being governed by a nonlinear Schroedinger model in an external potential related to the charges (the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo
    corecore