213 research outputs found

    Directed polymers and interfaces in random media : free-energy optimization via confinement in a wandering tube

    Full text link
    We analyze, via Imry-Ma scaling arguments, the strong disorder phases that exist in low dimensions at all temperatures for directed polymers and interfaces in random media. For the uncorrelated Gaussian disorder, we obtain that the optimal strategy for the polymer in dimension 1+d1+d with 0<d<20<d<2 involves at the same time (i) a confinement in a favorable tube of radius RS∼LνSR_S \sim L^{\nu_S} with νS=1/(4−d)<1/2\nu_S=1/(4-d)<1/2 (ii) a superdiffusive behavior R∼LνR \sim L^{\nu} with ν=(3−d)/(4−d)>1/2\nu=(3-d)/(4-d)>1/2 for the wandering of the best favorable tube available. The corresponding free-energy then scales as F∼LωF \sim L^{\omega} with ω=2ν−1\omega=2 \nu-1 and the left tail of the probability distribution involves a stretched exponential of exponent η=(4−d)/2\eta= (4-d)/2. These results generalize the well known exact exponents ν=2/3\nu=2/3, ω=1/3\omega=1/3 and η=3/2\eta=3/2 in d=1d=1, where the subleading transverse length RS∼L1/3R_S \sim L^{1/3} is known as the typical distance between two replicas in the Bethe Ansatz wave function. We then extend our approach to correlated disorder in transverse directions with exponent α\alpha and/or to manifolds in dimension D+d=dtD+d=d_{t} with 0<D<20<D<2. The strategy of being both confined and superdiffusive is still optimal for decaying correlations (α<0\alpha<0), whereas it is not for growing correlations (α>0\alpha>0). In particular, for an interface of dimension (dt−1)(d_t-1) in a space of total dimension 5/3<dt<35/3<d_t<3 with random-bond disorder, our approach yields the confinement exponent νS=(dt−1)(3−dt)/(5dt−7)\nu_S = (d_t-1)(3-d_t)/(5d_t-7). Finally, we study the exponents in the presence of an algebraic tail 1/V1+μ1/V^{1+\mu} in the disorder distribution, and obtain various regimes in the (μ,d)(\mu,d) plane.Comment: 19 page

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Hysteretic dynamics of domain walls at finite temperatures

    Get PDF
    Theory of domain wall motion in a random medium is extended to the case when the driving field is below the zero-temperature depinning threshold and the creep of the domain wall is induced by thermal fluctuations. Subject to an ac drive, the domain wall starts to move when the driving force exceeds an effective threshold which is temperature and frequency-dependent. Similarly to the case of zero-temperature, the hysteresis loop displays three dynamical phase transitions at increasing ac field amplitude h0h_0. The phase diagram in the 3-d space of temperature, driving force amplitude and frequency is investigated.Comment: 4 pages, 2 figure

    Non-Linear Stochastic Equations with Calculable Steady States

    Full text link
    We consider generalizations of the Kardar--Parisi--Zhang equation that accomodate spatial anisotropies and the coupled evolution of several fields, and focus on their symmetries and non-perturbative properties. In particular, we derive generalized fluctuation--dissipation conditions on the form of the (non-linear) equations for the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of a single height field in one dimension we give a general class of equations with exactly calculable (Gaussian and more complicated) steady states. In two dimensions, we show that any anisotropic system evolves on long time and length scales either to the usual isotropic strong coupling regime or to a linear-like fixed point associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the height field with additional order parameters which fluctuate on the growing surface. In this context, we propose phenomenological equations for the growth of a crystalline material, where the height field interacts with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case compression modes influence growth and are advected by height fluctuations, while in the second case it is the density of dislocations that couples with the height.Comment: 9 pages, revtex

    Dynamics of driven interfaces near isotropic percolation transition

    Get PDF
    We consider the dynamics and kinetic roughening of interfaces embedded in uniformly random media near percolation treshold. In particular, we study simple discrete ``forest fire'' lattice models through Monte Carlo simulations in two and three spatial dimensions. An interface generated in the models is found to display complex behavior. Away from the percolation transition, the interface is self-affine with asymptotic dynamics consistent with the Kardar-Parisi-Zhang universality class. However, in the vicinity of the percolation transition, there is a different behavior at earlier times. By scaling arguments we show that the global scaling exponents associated with the kinetic roughening of the interface can be obtained from the properties of the underlying percolation cluster. Our numerical results are in good agreement with theory. However, we demonstrate that at the depinning transition, the interface as defined in the models is no longer self-affine. Finally, we compare these results to those obtained from a more realistic reaction-diffusion model of slow combustion.Comment: 7 pages, 9 figures, to appear in Phys. Rev. E (1998

    Jamming transition in a homogeneous one-dimensional system: the Bus Route Model

    Full text link
    We present a driven diffusive model which we call the Bus Route Model. The model is defined on a one-dimensional lattice, with each lattice site having two binary variables, one of which is conserved (``buses'') and one of which is non-conserved (``passengers''). The buses are driven in a preferred direction and are slowed down by the presence of passengers who arrive with rate lambda. We study the model by simulation, heuristic argument and a mean-field theory. All these approaches provide strong evidence of a transition between an inhomogeneous ``jammed'' phase (where the buses bunch together) and a homogeneous phase as the bus density is increased. However, we argue that a strict phase transition is present only in the limit lambda -> 0. For small lambda, we argue that the transition is replaced by an abrupt crossover which is exponentially sharp in 1/lambda. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation of the model is given in which the spaces between ``buses'' and the buses themselves are interchanged. This describes a system of particles whose mobility decreases the longer they have been stationary and could provide a model for, say, the flow of a gelling or sticky material along a pipe.Comment: 17 pages Revtex, 20 figures, submitted to Phys. Rev.

    From dynamical scaling to local scale-invariance: a tutorial

    Full text link
    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for

    Novel non-equilibrium critical behavior in unidirectionally coupled stochastic processes

    Full text link
    Phase transitions from an active into an absorbing, inactive state are generically described by the critical exponents of directed percolation (DP), with upper critical dimension d_c = 4. In the framework of single-species reaction-diffusion systems, this universality class is realized by the combined processes A -> A + A, A + A -> A, and A -> \emptyset. We study a hierarchy of such DP processes for particle species A, B,..., unidirectionally coupled via the reactions A -> B, ... (with rates \mu_{AB}, ...). When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents \beta_i which are markedly reduced at each hierarchy level i >= 2. This scenario can be understood on the basis of the mean-field rate equations, which yield \beta_i = 1/2^{i-1} at the multicritical point. We then include fluctuations by using field-theoretic renormalization group techniques in d = 4-\epsilon dimensions. In the active phase, we calculate the fluctuation correction to the density exponent for the second hierarchy level, \beta_2 = 1/2 - \epsilon/8 + O(\epsilon^2). Monte Carlo simulations are then employed to determine the values for the new scaling exponents in dimensions d<= 3, including the critical initial slip exponent. Our theory is connected to certain classes of growth processes and to certain cellular automata, as well as to unidirectionally coupled pair annihilation processes. We also discuss some technical and conceptual problems of the loop expansion and their possible interpretation.Comment: 29 pages, 19 figures, revtex, 2 columns, revised Jan 1995: minor changes and additions; accepted for publication in Phys. Rev.

    Nonequilibrium critical dynamics of the relaxational models C and D

    Full text link
    We investigate the critical dynamics of the nn-component relaxational models C and D which incorporate the coupling of a nonconserved and conserved order parameter S, respectively, to the conserved energy density rho, under nonequilibrium conditions by means of the dynamical renormalization group. Detailed balance violations can be implemented isotropically by allowing for different effective temperatures for the heat baths coupling to the slow modes. In the case of model D with conserved order parameter, the energy density fluctuations can be integrated out. For model C with scalar order parameter, in equilibrium governed by strong dynamic scaling (z_S = z_rho), we find no genuine nonequilibrium fixed point. The nonequilibrium critical dynamics of model C with n = 1 thus follows the behavior of other systems with nonconserved order parameter wherein detailed balance becomes effectively restored at the phase transition. For n >= 4, the energy density decouples from the order parameter. However, for n = 2 and n = 3, in the weak dynamic scaling regime (z_S <= z_rho) entire lines of genuine nonequilibrium model C fixed points emerge to one-loop order, which are characterized by continuously varying critical exponents. Similarly, the nonequilibrium model C with spatially anisotropic noise and n < 4 allows for continuously varying exponents, yet with strong dynamic scaling. Subjecting model D to anisotropic nonequilibrium perturbations leads to genuinely different critical behavior with softening only in subsectors of momentum space and correspondingly anisotropic scaling exponents. Similar to the two-temperature model B the effective theory at criticality can be cast into an equilibrium model D dynamics, albeit incorporating long-range interactions of the uniaxial dipolar type.Comment: Revtex, 23 pages, 5 eps figures included (minor additions), to appear in Phys. Rev.

    Disorder-Induced Depinning Transition

    Full text link
    The competition in the pinning of a directed polymer by a columnar pin and a background of random point impurities is investigated systematically using the renormalization group method. With the aid of the mapping to the noisy-Burgers' equation and the use of the mode-coupling method, the directed polymer is shown to be marginally localized to an arbitrary weak columnar pin in 1+1 dimensions. This weak localization effect is attributed to the existence of large scale, nearly degenerate optimal paths of the randomly pinned directed polymer. The critical behavior of the depinning transition above 1+1 dimensions is obtained via an ϵ\epsilon-expansion.Comment: 47 pages in revtex; postscript files of 6 figures include
    • …
    corecore