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Dynamics of driven interfaces near isotropic percolation transition
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Montréal, Québéc, Canada H3A 2T8

3Department of Physics and Mechanical Engineering, Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois, 61801-3080

4Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912-1843
~Received 10 March 1998!

We consider the dynamics and kinetic roughening of interfaces embedded in uniformly random media near
percolation treshold. In particular, we study simple discrete ‘‘forest fire’’ lattice models through Monte Carlo
simulations in two and three spatial dimensions. An interface generated in the models is found to display
complex behavior. Away from the percolation transition, the interface is self-affine with asymptotic dynamics
consistent with the Kardar-Parisi-Zhang universality class. However, in the vicinity of the percolation transi-
tion, there is a different behavior at earlier times. By scaling arguments we show that the global scaling
exponents associated with the kinetic roughening of the interface can be obtained from the properties of the
underlying percolation cluster. Our numerical results are in good agreement with theory. However, we dem-
onstrate that at the depinning transition, the interface as defined in the models is no longer self-affine. Finally,
we compare these results with those obtained from a more realistic reaction-diffusion model of slow combus-
tion. @S1063-651X~98!08708-X#

PACS number~s!: 05.40.1j, 68.35.Rh, 82.20.Wt

I. INTRODUCTION

Interfaces embedded in random media have received a
considerable amount of interest recently. Such diverse phe-
nomena as pinning of flux lines in superconductors, dynam-
ics of flame fronts in paper, and imbibition all contain inter-
faces propagating in random media with quenched noise@1#.
For many such cases, an equation of motion for the
d-dimensional height variableh(rW,t) can be written in the
form

]h~rW,t !

]t
5n¹2h~rW,t !1

1

2
lu¹W h~rW,t !u21F1h~rW,h!, ~1!

whereF is the driving force and the noise termh represents
quenched disorder and is sufficiently short ranged.

The behavior of driven interfaces near the depinning tran-
sition F→Fc at which the interface ceases to propagate and
its average velocityv approaches zero has turned out to be
nontrivial. In particular, there are two important universality
classes that many different models of interface dynamics fall
into at the depinning transition, namely, the isotropic depin-
ning ~ID! or the directed percolation depinning~DPD! cases
@1–3#. Roughly speaking, models whose microscopic dy-
namics is isotropic belong to the ID universality class and
those with spatial anisotropy to the anisotropic universality
classes, of which perhaps the most common one is the DPD

case@3#. These universality classes can be distinguished by
the values of the scaling exponents associated with the inter-
face near the transition as well as the behavior of the nonlin-
ear terml in the equation of motion for the interface. For the
ID case,l is kinetically generated (l;v) and vanishes at
the transition, while for the DPD case this is no longer true.

In this work we report the results of extensive numerical
simulations of some simple ‘‘forest fire’’ lattice models@4#
where an interface propagates in a uniformly random back-
ground of reactants with an average concentration 0,c,1.
This is an interesting special case of a motion of an interface
through a background medium of quenched noise, with the
additional feature that there is an underlyingisotropic perco-
lation transition at some finite densityc* . Below c* , the
interface becomes pinned due to the percolation transition
and one may expect different features to arise in this class of
problems, which we call hereisotropic percolation depin-
ning. There is little work on the dynamics of interfaces in
such isotropic lattice models, in particular near percolation
@1,5#. These type of models are also interesting from the
point of view of recent theoretical@6–8# and experimental
@9,10# studies of dynamics of slow combustion in random
media.

Our results indeed reveal interesting and complex behav-
ior in the dynamics of the interface. Above the depinning
transition forc.c* , the kinetic roughening of the interface
is found to be described asymptotically by the Kardar-Parisi-
Zhang~KPZ! @11# universality class as described by Eq.~1!
with annealed, Gaussian noise. Results consistent with the
KPZ universality class were also found in the simulations of
Refs.@6,7# of a more realistic continuum model of slow com-
bustion. On approaching the percolation transition of the un-
derlying lattice,l seems to decrease since the nonlinear term
is kinetically generated in the present case. We find that in
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this regime, there is a different early-time behavior. We
show that in this case theglobal scaling exponents charac-
terizing the kinetic roughening of the interface can be ob-
tained by utilizing results of percolation theory. In particular,
this means that these exponents are completely determined
by the properties of the percolation cluster and the con-
tinuum description of Eq.~1! must break down. Furthermore,
we show that the interface atc* as defined in the models is
no longer self-affine, but seems to showmultiscalingsince
roughness exponents as measured numerically from different
correlation functions differ@12#.

The results from the discrete model are compared and
contrasted with those obtained for a continuum phase-field
model of slow combustion introduced and studied in Refs.
@6–8#. We find that at high concentrations well abovec* , the
two models display qualitatively similar behavior. However,
asc→c* , the kinetic roughening of the interface is different
in the two models, in that there is no evidence of crossover in
the continuum model. We show through an analytic argu-
ment that this is essentially due to the divergence of the
width of the front in the continuum model and can be under-
stood in the framework of mean-field theory.

The remainder of this paper is organized as follows. In
Sec. II the model is introduced and characterized in detail. In
Sec. III the results of extensive Monte Carlo simulations in
two and three spatial dimensions are presented. Also, a
theory to explain the observed crossover in the dynamics is
developed in this section. A comparison between the discrete
and continuum models is carried out. Finally, in Sec. IV we
conclude and discuss our results.

II. ‘‘FOREST FIRE’’ MODELS

We consider the following simple forest fire~FF! cellular
automaton models@4# on square and simple cubic lattices in
two and three spatial dimensions, respectively. The status of
each lattice site can be one of the following:~i! an empty
site, ~ii ! a site occupied by an unburned tree,~iii ! a site oc-
cupied by a burning tree, and~iv! a site occupied by a burned
tree. Initially, a fractionc(0,c,1) of the sites are occupied
by a tree. The initial distribution of trees is uniformly ran-
dom with no spatial correlations. In the two-dimensional
~2D! case the lattice is of lengthL in the x direction with
periodic boundary conditions andL8 in the y direction with
free boundary conditions. In the 3D case the lattice is of
length L also in thez direction. Unless otherwise stated,
L8@L @13#.

The front propagation is initiated att50 by igniting all
the trees at the bottom of the lattice (y50 in two dimensions
and thexz plane in three dimensions, respectively!. The dy-
namics of the model is defined by the following set of rules:
During one Monte Carlo time step, a burning tree ignites all
the unburned trees in a fixed, finite region around it and
becomes a burned tree. In this work, we consider the nearest-
neighbor~NN! and next-nearest-neighbor~NNN! FF models
in two dimensions, and the NN model in three dimensions. A
burned tree will remain as such and new trees will not be
generated during simulations, in contrast to several versions
of this basic model that display self-organized criticality
@14#. The position of the emerging interfaceh(rW,t) at column
rW is defined as the location of the highest burning treeor the

highest burned tree, if there are no burning trees in that col-
umn @15#. We note that this definition is sufficient to make
the interface single valued.

The continuum model for which we will also present
some different results has been introduced and studied in
Refs. @6–8#. Briefly, the model is based on a phase-field
appraoch, utilizing a set of coupled partial differential equa-
tions ~PDE’s! describing the evolution of a thermal diffusion
field T(x,y) coupled to a random reactants concentration
field c(x,y). The interplay between thermal dissipation and
reaction diffusion of heat generated by combustion deter-
mines the dynamics in the model. To study front propaga-
tion, the set of equations is discretized on a 2D lattice and
solved numerically. In analogy with the FF model, the lattice
sites are randomly filled with reactants~‘‘trees’’ ! that
‘‘burn’’ according to the kinetics defined by the PDE’s. The
main difference with respect to cellular automaton type of
models is that not only is the dynamics more realistic, but
that the effective range of interactions is in part determined
by local combustion dynamics. Also, the interface in the con-
tinuum model is not sharp, but can be defined through the
local maximum of the temperature fieldT(x,y).

III. RESULTS

In order to quantitatively characterize the kinetic rough-
ening of the interface, we have considered the following
quantities@1,16#. First, theglobal width w(c,t,L) of the in-
terface is defined by

w2~c,t,L ![^@h~rW,t !2h~rW,t !#2&, ~2!

where the overbar denotes a spatial average over the system
of sizeL and angular brackets denote configuration averag-
ing. Correspondingly, thelocal width of the interface
wl (c,t) can be defined as

wl
2 ~c,t ![Š^@h~rW,t !2^h~rW,t !& l #2& l ‹, ~3!

where the notation̂ & l now denotes spatial averaging over
all subsystems of sizel of a system of total sizeL. For
growing self-affine interfaces, both the global and local
widths satisfy the Family-Viscek scaling relation@17# and
have asymptotic behavior given by

w2~ t,L !;H t2b for t!Lz

L2x for t@Lz,
~4!

and correspondingly forwl
2 (t). The quantitiesb and x de-

fine growth and roughness exponents, respectively, andx
5bz @18#. We note that in addition to using the width, scal-
ing exponents can be obtained by using the height-height
difference correlation function

C~r ,t !5^dh~rW0 ,t0!2dh~rW01rW,t01t !] 2 &, ~5!

with dh[h2h̄, in the appropriate regimes@1#.

A. Dynamics of one-dimensional interfaces

In the FF models, the emerging fire sweeps through all the
sites that are connected by the nearest- or next-nearest-
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neighbor rule throughout the system. The front motion can
thus be sustained only for lattices whose average concentra-
tion c is at or beyond the percolation treshold of a 2D square
lattice, which is known to be c* '0.592 746 and
c* '0.407 254 for the NN and NNN cases, respectively@19#.
Thus the pinning of the interface belowc* is a direct con-
sequence of the static percolation transition and we call this
phenomenonisotropic percolation depinning~IPD! here.
There are two competing length scales in the problem,
namely, the correlation length associated with the percola-
tion transitionj(c) and the lateral correlation length of the
moving interfacej uu(t) that grows liket1/z @20#. In the vicin-
ity of c*

j~c!;~c2c* !2n, ~6!

wheren defines the~static! correlation length exponent and
n54/3 in 2D percolation@19#.

In the regime where pinning effects can be neglected, it
has been demonstrated that the quenched noise in Eq.~1!
crosses over to thermal noise@1#. In the FF models, this
sitation is realized well abovec* , wherej(c) is essentially
of the order of the lattice constant andj(c)!j uu(t) readily
holds. Indeed, in this regime we find that the interface moves
with a constant velocity and its global width roughens as-
ymptotically as given by Eq.~4!, with b'1/3 andx'1/2, in
accordance with the KPZ universality class. For example, for
the NN model atc50.95 we obtainb50.33(1) for L
520 000 andx50.50(2) for a system size ofL55000. In
Fig. 1 we plotw(t) vs t and the effective exponentbeff(t)
5 lnw(t)/lnt that shows the asymptotic KPZ behavior. We
would like to point out that there is an initial time regime
where the width grows according to the uncorrelated random
deposition model, withw(t);t1/2. For the NN model, this
regime is long lived only forc very close to unity@21#.

The asymptotic KPZ behavior forc.c* is not unex-
pected since the velocity of the interface in the FF models is
clearly tilt dependent, which generates the nonlinear term
proportional tol in Eq. ~1!. In Fig. 2~a! we show the behav-
ior of l as a function ofc abovec* for the NN case. It has
been calculated numerically by computing the average veloc-
ity v of the interface as a function of the global tiltm and
fitting a parabola to it form!1 @1,5#. The interesting result
is thatl displays nonmonotonic behavior and seems to even-
tually decreasewhen approching the percolation transition.
In fact, we expect thatl(c)→0 asc→c* because the inter-
face is eventually forced to propagate in the infinite percola-
tion cluster, which is known to be self-similar and isotropic
at the percolation threshold@22#. Since there is no preferred
growth direction atc* , the tilting of the interface should not
affect the velocity of the interface any more.

This diminishing ofl on approachingc* means that the
nonlinear term in Eq.~1! becomes less and less important at
early times wherej(c)@j uu . For the continuum description
to hold, however, the local slopes of the interface should also
remain small. We have studied this numerically for various
values ofc close toc* , where two things can be observed for
the behavior of the global widthw(t,L). First, the range of
the late-time KPZ scaling regime becomes smaller in time as
c* is approached from above. Second, another regime where
well defined power-law scaling ofw(t);tb* can be ob-

served appears at earlier times. In Fig. 3~a! we show the
behavior of the global width for a system of sizeL
520 000 atc50.59 275~NN model!. We find that starting
from early times, there is a scaling regime where the growth
exponentb* 50.88(1). Simulations of the NNN model at
c50.407 give b* '0.88, correspondingly. In this regime
parts of the interface become pinned by unburned regions on
the lattice and the interface motion consists of large jumps,
with large local slopes appearing. This behavior indicates
that the interfaces may not be self-affine@12#.

The numerically observed crossover behavior can be for-
mulated theoretically by assuming that it is induced by the
underlying percolation transition. We write the following
scaling form for the global widthw(c,t):

w~c,t !5j~c! f S t

tc
D , ~7!

wheretc denotes the crossover time to the KPZ regime and
the scaling functionf (u) has the limits

FIG. 1. ~a! Global widthw(t) vs t in two dimensions for the NN
model with c50.95 andL520000. The inset shows the effective
growth exponentbeff(t) vs t, wherebeff(t)[ lnw(t)/lnt. The exact
KPZ value ofb51/3 is shown by the horizontal line.~b! Global
width w(t) vs t for the 3D NN model, withc50.97 andL3L
52003200. In both cases averages were taken over 100 runs. The
inset showsbeff(t), with the horizontal value indicating the KPZ
resultb'0.24.
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f ~u!;H ub* if u!1

ub if u@1.
~8!

Hereb* '0.88 andb51/3. Using Eq.~5! for j(c) and as-
suming thattc(c);(c2c* )2D we find that best data col-
lapse as shown in Fig. 4 is obtained forn51.3 and D
51.65. Takingn54/3 and the dynamic exponentz* given
by the exponentdmin'1.13 associated with the scaling of the
minimum path distance@5,23#, D5nz* '1.51. Thus our nu-
merical results are in good agreement with theory.

At c* wherej uu!j(c) for long times (t!Lz* ), the inter-
face is pinned by clusters formed by the unoccupied sites and
the quenched disorder dominates. The interface follows the
‘‘edge’’ of the infinite percolation cluster. The global rough-
ness exponentx* can be then be directly deduced from the
geometric properties of the percolation transition. In particu-
lar @5,1#, x* 5n' /n uu , wheren' andn uu are the perpendicu-
lar and parallel correlation length exponents of the critical
percolation cluster, respectively. Since the percolation clus-
ter in the FF model is isotropic andn'5n uu5n, the rough-
ness exponentx* 51 in all dimensions. In this case, the
exponent z* 5dmin'1.13, which leads tob* 5x* /z*
51/dmin'0.88, in excellent agreement with our simulations.
These results indicate that the continuum description of Eq.
~1! must break down atc* for the present IPD case@24#.

We have examined the interface roughness exponentx
numerically by studying the interface dynamics as close to
c* as possible. We have computed the generalizedqth-order
height difference correlation functions

Gq~r ,t !5^@h~r ,t !2h̄~ t !#q&;r qxq for r !j uu ~9!

by running the simulation until the interface finally stops~for
a finite system! and approximately traces out the edge of the
percolation cluster. For a self-affine interface there is only
one roughness exponent and thusx5xq for all q
52,4,6, . . . . Ournumerical results for aL52000 system at
c50.5928~NN model! give thatx250.54(5), x450.29(3),
andx650.21(2). This indicates that the interface associated
with the percolation clusteras defined in the modelis not
self-affine atc* . The reason is most likely that the overhangs
in the front edge of the interface that follow the percolation
cluster are removed. However, the scaling exponents for
each higher-order correlation function that we have calcu-
lated seem to be very well defined, which is an indication of
multiscaling similar to that seen in the longitudinal structure
functions in the study of turbulence@25#.

FIG. 2. ~a! l vs c in two dimensions withL52000 for the NN
lattice model. The data were averaged over 1000 runs.~b! l vsc for
the continuum model, withL5200.

FIG. 3. ~a! w(t) vs t in the 2D NN lattice model very close to
the percolation transition (c50.592 75, L520 000). The inset
shows the effective growth exponentbeff(t) and the horizontal line
indicates the value 0.88.~b! w(t) vs t in the 3D NN lattice model
very close to the percolation transition (c50.312, L3L3L
5110031100). The inset shows the effective growth exponent
beff(t) vs t and the horizontal line indicates the value 0.72.
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We have also numerically verified the scaling of the av-
erage velocityv(c) of the interface as a function ofc2c*
near the percolation threshold~see Fig. 5!. It is expected to
vanish as

v~c!5A~c2c* !u. ~10!

Our data for the NN model giveA'1.14 and our best esti-
mate for the velocity exponent isu50.169(5) @the NNN
model givesu50.17(5)#. In order to check the consistency
of this result, we note that there exists a well-known scaling
relation betweenu, z* , n, andx* , namely@1#,

u5~z* 2x* !n. ~11!

By using the valuesz* 51.13,x* 51, andn54/3 we obtain
u50.173. This is in very good agreement with our data.

B. Dynamics of two-dimensional interfaces

The 3D lattice model that we have studied is a simple
generalization of the 2D case to a simple cubic geometry.
We only consider the NN case here. The behavior of the
emerging surface near the percolation threshold is qualita-
tively similar to the 2D case. In particular, in the long time
limit for c.c* the interface roughens in time with the
growth exponentb50.24(2) as shown in Fig. 1~b!, in ex-
cellent agreement with numerical solutions of thed5211
KPZ equation and various discrete models that belong to the
KPZ universality class@1,26,27#.

Closer to c* '0.316, we see the percolation-induced
crossover. Atc50.316 we find numerically that the interface
roughens with a growth exponentb* 50.72(5) @Fig. 3~b!#.
Again, the exponents characterizing the interface can be ob-
tained from the exponents of the critical percolation cluster.
In particular, it is reasonable to assume that the global rough-
ness exponentx* 51 since the cluster is isotropic. More-
over, the minimum path exponent is known ind53 to be
dmin51.38(2) and this determines the dynamic exponent

z* 5dmin @23#. As a consistency check, taken together with
the result thatx* 51, this implies that, at depinning transi-
tion, b* 5x* /z* '0.724. Our direct evaluation ofb agrees
very well with this prediction. We expect again that the in-
terface as defined in the 3D model is not self-affine atc* ;
however, we have not computedx* numerically.

We have also calculated the velocity exponent and find
u50.26(2). Using the scaling exponent relationu5(z*
2x* )n with z* 51.38,x* 51, andn50.88 givesu50.33,
which is in reasonably good agreement with our data.

C. Flame front propagation in the continuum model

We have compared the dynamics of interface of the lattice
model with a more realistic continuum reaction-diffusion
model of Refs.@6,7#. This model is a type of phase-field
model that couples the evolution of a thermal diffusion field
to a randomly distributed concentration field of reactants.
The model couples the effects of thermal dissipation and
diffusion to heat generated by combustion via an Arrhenius-
activated reaction term. To study front propagation, the
model is discretized on a 2D lattice and solved numerically.

FIG. 4. Crossover scaling functionf (t/tc) of the global width
w(c,t), as defined in Eq.~6!. The unscaled data for different con-
centrations (c50.594, 0.60, 0.605, 0.61, 0.615, 0.62, and 0.63,
from top to bottom, andL51000) are shown in the inset. The data
collapse has been obtained usingn51.3 andD51.65. See the text
for details.

FIG. 5. ~a! Scaling of the interface velocityv vs c2c* for the
2D NN lattice model, withL52000. The straight line shows the
best fit to the data, withu50.169 in Eq.~9!. ~b! Scaling of the
interface velocityv vs c2c* for the 3D NN lattice model, with
L3L51003100. The straight line shows the best fit to the data,
with u50.26. The error bars here are smaller than the symbol sizes.
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In analogy with the FF model, the lattice sites are randomly
filled with reactants~trees!, with an average normalized con-
centration ofc[c(x,y)̄ . After ignition of the bottom row of
reactants att50, the heat generated will ignite other occu-
pied lattice sites around it and the local fieldc(x,y) corre-
sponding to the sites of the burning reactants will quickly
approach zero as determined by the equations. A single-
valued interface in the model is defined by the maximum of
the temperature fieldT(x,y) for each columnx.

Previously, it was shown that that the kinetic roughening
of the flame fronts generated by the continuum model belong
to the thermal KPZ universality class@6,7#. In the limit of
almost uniform background density, the KPZ description
was also derived analytically from the set of equations for
the model@7#. The main difference with respect to the FF
lattice model was that even very close to the percolation
threshold of the modelc* '0.20, there was no evidence of
percolation induced crossover. Also, the continuum model
nearc* gave results that were consistent with the mean-field
theory of percolation, e.g.,n'0.5 andu'0.5 @7#.

In Fig. 2~b! we show the behavior of the nonlinear coef-
ficient l for the continuum combustion model. Similarly to
the FF lattice model, we find thatl approaches zero forc
→c* . However, unlike the the lattice model, no crossover
behavior is observed asc→c* . This is explained as follows:
From the mean-field analysis of Ref.@7#, the leading front of
the thermal field decays as

TMF~x!;e2x/ l D, ~12!

wherel D5D/vm is the thermal diffusion length defining the
range of effective interactions in the model and thus also the
scale of the intrinsic thickness of the interfacewint . The
constantsvm andD are the mean interface velocity and ther-
mal diffusion constant, respectively. Using the result that
vm;(c2c* )0.5, we conclude thatwint;(c2c* )20.5. On the
other hand, in the mean-field percolation transition the cor-
relation length scales asj(c);(c2c* )20.5. These results
imply that the thickness of the interface hasthe same diver-
genceas the correlation length, within which the crossover
behavior should be observed. Thus everything that happens
on length scales smaller thanwint will be smeared out. There-
fore, due to the increasing thickness of the interface, the
second regime at early times is never observed.

IV. SUMMARY AND DISCUSSION

In this work we have studied the dynamics of interfaces in
random media through Monte Carlo simulations of some dis-
crete cellular automaton models of forest fires. We find that
away from the depinning transition induced by the isotropic
percolation transition of the underlying lattice, the kinetic
roughening is asymptotically described by the Kardar-Parisi-
Zhang@11# universality class. In the vicinity of the IPD tran-
sition, however, the behavior is found to be different. At the
transition, theglobal roughness exponentx* and the growth
exponentb* are completely determined by the geometric
properties of the percolation transition, leading to the result
thatx* 51 andb* 51/dmin in all dimensions. We have veri-
fied this numerically for the exponentb* in the 2D and 3D
cases. However, by computing the roughness exponent of the
interface from different correlation functions, we find that
the interface is no longer self-affine, but seems to indicate
multiscaling. This is most likely due to the removal of over-
hangs in the way the interface is defined in the models.

A comparison between the lattice models and the more
realistic model of Refs.@6–8# was made and qualitatively
similar behavior was found at high concentrations. Interest-
ingly, however, the two models displayed qualitatively dif-
ferent behavior forc→c* . In particular, the exponents com-
patible with the KPZ universality were shown to hold for all
values ofc studied in Refs.@6,7#. We demonstrate that this
can be understood on the basis of the mean-field nature of
the percolation transition exhibited by the continuum model.

The models studied here are particularly interesting from
the point of view of the recent experiments on slow combus-
tion of paper@10,28#. In these experiments, asymptotic KPZ
exponents were verified for driven interfaces. This is in com-
plete agreement with all the models here well above perco-
lation, as well as the DPD universality class. Near percola-
tion, the assumption made on the basis of the earlier
experiments by Zhanget al. @9# has been that DPD effects
dominate@1#. However, the most recent experiments indicate
@28# that the effective short-range exponents before KPZ as-
ymptotics may not be well defined.
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1083 ~1994!.

@28# J. Maunuksela, M. Myllys, J. Timonen, M. Kuittu, T. Ala-
Nissila, M. J. Alava, and N. Provatas~unpublished!.

1520 PRE 58KUITTU, HAATAJA, PROVATAS, AND ALA-NISSILA


