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Dynamics of driven interfaces near isotropic percolation transition
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1110 West Green Street, Urbana, lllinois, 61801-3080
“Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912-1843
(Received 10 March 1998

We consider the dynamics and kinetic roughening of interfaces embedded in uniformly random media near
percolation treshold. In particular, we study simple discrete “forest fire” lattice models through Monte Carlo
simulations in two and three spatial dimensions. An interface generated in the models is found to display
complex behavior. Away from the percolation transition, the interface is self-affine with asymptotic dynamics
consistent with the Kardar-Parisi-Zhang universality class. However, in the vicinity of the percolation transi-
tion, there is a different behavior at earlier times. By scaling arguments we show that the global scaling
exponents associated with the kinetic roughening of the interface can be obtained from the properties of the
underlying percolation cluster. Our numerical results are in good agreement with theory. However, we dem-
onstrate that at the depinning transition, the interface as defined in the models is no longer self-affine. Finally,
we compare these results with those obtained from a more realistic reaction-diffusion model of slow combus-
tion. [S1063-651X%98)08708-X

PACS numbgs): 05.40:+j, 68.35.Rh, 82.20.Wt

[. INTRODUCTION case[3]. These universality classes can be distinguished by
the values of the scaling exponents associated with the inter-
Interfaces embedded in random media have received face near the transition as well as the behavior of the nonlin-
considerable amount of interest recently. Such diverse phesar term\ in the equation of motion for the interface. For the
nomena as pinning of flux lines in superconductors, dynamtD case,\ is kinetically generated\(~v) and vanishes at
ics of flame fronts in paper, and imbibition all contain inter- the transition, while for the DPD case this is no longer true.
faces propagating in random media with quenched ridike In this work we report the results of extensive numerical
For many such cases, an equation of motion for the&imulations of some simple “forest fire” lattice modelé]
d-dimensional height variabla(r,t) can be written in the Where an interface propagates in a uniformly random back-
form ground of reactants with an average concentratierc€ 1.
This is an interesting special case of a motion of an interface
1 through a background medium of quenched noise, with the
=vV2h(r,t)+ =\|Vh(r,t)|2+F+5(r,h), (1) additional feature that there is an underlyiagtropic perco-
2 lation transition at some finite densitg*. Below c*, the
interface becomes pinned due to the percolation transition
whereF is the driving force and the noise termrepresents and one may expect different features to arise in this class of
quenched disorder and is sufficiently short ranged. problems, which we call herésotropic percolation depin-
The behavior of driven interfaces near the depinning tranning. There is little work on the dynamics of interfaces in
sition F—F. at which the interface ceases to propagate anguch isotropic lattice models, in particular near percolation
its average velocity approaches zero has turned out to be[1,5]. These type of models are also interesting from the
nontrivial. In particular, there are two important universality point of view of recent theoreticdb—8] and experimental
classes that many different models of interface dynamics fall9,10] studies of dynamics of slow combustion in random
into at the depinning transition, namely, the isotropic depin-media.
ning (ID) or the directed percolation depinnifiBPD) cases Our results indeed reveal interesting and complex behav-
[1-3]. Roughly speaking, models whose microscopic dy-ior in the dynamics of the interface. Above the depinning
namics is isotropic belong to the ID universality class andtransition forc>c*, the kinetic roughening of the interface
those with spatial anisotropy to the anisotropic universalityis found to be described asymptotically by the Kardar-Parisi-
classes, of which perhaps the most common one is the DPRhang(KPZ) [11] universality class as described by E)
with annealed, Gaussian noise. Results consistent with the
KPZ universality class were also found in the simulations of
* Author to whom correspondence should be addressed. Perm&efs.[6,7] of a more realistic continuum model of slow com-
nent address: Laboratory of Physics, Helsinki University of Tech-bustion. On approaching the percolation transition of the un-
nology, P. O. Box 1100, FIN-02015 HUT, Espoo, Finland. Elec- derlying lattice A seems to decrease since the nonlinear term
tronic address: Tapio.Ala-Nissila@helsinki.fi is kinetically generated in the present case. We find that in

ah(r,t)
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this regime, there is a different early-time behavior. Wehighest burned tree, if there are no burning trees in that col-
show that in this case thglobal scaling exponents charac- umn[15]. We note that this definition is sufficient to make
terizing the kinetic roughening of the interface can be ob-the interface single valued.
tained by utilizing results of percolation theory. In particular, The continuum model for which we will also present
this means that these exponents are completely determinsdme different results has been introduced and studied in
by the properties of the percolation cluster and the conRefs. [6-8]. Briefly, the model is based on a phase-field
tinuum description of Eq.1) must break down. Furthermore, appraoch, utilizing a set of coupled partial differential equa-
we show that the interface at as defined in the models is tions(PDE’s) describing the evolution of a thermal diffusion
no longer self-affine, but seems to shomultiscalingsince  field T(x,y) coupled to a random reactants concentration
roughness exponents as measured numerically from differefield c(x,y). The interplay between thermal dissipation and
correlation functions diffef12]. reaction diffusion of heat generated by combustion deter-
The results from the discrete model are compared anchines the dynamics in the model. To study front propaga-
contrasted with those obtained for a continuum phase-fieltion, the set of equations is discretized on a 2D lattice and
model of slow combustion introduced and studied in Refssolved numerically. In analogy with the FF model, the lattice
[6—8]. We find that at high concentrations well abafe the  sites are randomly filled with reactant$‘trees”) that
two models display qualitatively similar behavior. However, “burn” according to the kinetics defined by the PDE’s. The
asc—c*, the kinetic roughening of the interface is different main difference with respect to cellular automaton type of
in the two models, in that there is no evidence of crossover imodels is that not only is the dynamics more realistic, but
the continuum model. We show through an analytic arguthat the effective range of interactions is in part determined
ment that this is essentially due to the divergence of théy local combustion dynamics. Also, the interface in the con-
width of the front in the continuum model and can be undertinuum model is not sharp, but can be defined through the

stood in the framework of mean-field theory. local maximum of the temperature fieldx,y).
The remainder of this paper is organized as follows. In
Sec. Il the model is introduced and characterized in detail. In IIl. RESULTS

Sec. lll the results of extensive Monte Carlo simulations in o ) o

two and three spatial dimensions are presented. Also, a .In order to _quantltanvely charactenzg the kinetic rough—
theory to explain the observed crossover in the dynamics i§Ning of the interface, we have considered the following
developed in this section. A comparison between the discret@uantities[1,16]. First, theglobal width w(c,t,L) of the in-
and continuum models is carried out. Finally, in Sec. IV weterface is defined by

conclude and discuss our results. _
w?(c,t,L)=([h(r,t)—h(r.n1%), ©)

Il. "FOREST FIRE" MODELS where the overbar denotes a spatial average over the system

We consider the following simple forest fitEF) cellular ~ of sizeL and angular brackets denote configuration averag-
automaton modelf4] on square and simple cubic lattices in ing. Correspondingly, thelocal width of the interface
two and three spatial dimensions, respectively. The status a¥(C,t) can be defined as
each lattice site can be one of the followin@ an empty 5 R R 5
site, (i) a site occupied by an unburned tréid,) a site oc- w(c,t)=(([h(r,t)—(h(r,1)), 1)), 3
cupied by a burning tree, arfi) a site occupied by a burned
tree. Initially, a fractionc(0<c<1) of the sites are occupied
by a tree. The initial distribution of trees is uniformly ran-
dom with no spatial correlations. In the two-dimensiona
(2D) case the lattice is of length in the x direction with
periodic boundary conditions and in they direction with

where the notatioq ), now denotes spatial averaging over
all subsystems of size&” of a system of total siz&. For
|growing self-affine interfaces, both the global and local
widths satisfy the Family-Viscek scaling relati¢h7] and
have asymptotic behavior given by

free boundary conditions. In the 3D case the lattice is of 28 fort<|?
length L also in thez direction. Unless otherwise stated, w2(t,L)~ (4)
L's>L [13]. L2X  fort>L?

The front propagation is initiated a&=0 by igniting all d dinaly fon? h - dv d
the trees at the bottom of the latticg=€ 0 in two dimensions and correspondingly o, (t). The quantitiess andy de-
and thexz plane in three dimensions, respectivelyhe dy- fine growth and roughness exponents, respectively, and
namics of the model is defined by the following set of rules: =87 [18]- We note that in addition to using the width, scal-

During one Monte Carlo time step, a burning tree ignites all"d €xponents can be obtained by using the height-height
the unburned trees in a fixed, finite region around it andifference correlation function

becomes a burned tree. In this work, we consider the nearest- = —
neighbor(NN) and next-nearest-neighbdNN) FF models C(r,t)=(8N(rq,tg) = Sh(ro+r,to+1)]?), 5
in two dimensions, and the NN model in three dimensions. A — ) )

burned tree will remain as such and new trees will not baVith sh=h—h, in the appropriate regime4].

generated during simulations, in contrast to several versions

of this basic model that display self-organized criticality A. Dynamics of one-dimensional interfaces

[14]. The position of the emerging interfabér,t) at column In the FF models, the emerging fire sweeps through all the
r is defined as the location of the highest burning we¢he  sites that are connected by the nearest- or next-nearest-
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neighbor rule throughout the system. The front motion can 2
thus be sustained only for lattices whose average concentra-

tion c is at or beyond the percolation treshold of a 2D square 1
lattice, which is known to bec*~0.592746 and

c*=~0.407 254 for the NN and NNN cases, respectijas. 0

Thus the pinning of the interface belos? is a direct con-
sequence of the static percolation transition and we call this
phenomenonisotropic percolation depinning(IPD) here.
There are two competing length scales in the problem, 2
namely, the correlation length associated with the percola-
tion transitioné(c) and the lateral correlation length of the

In [w(?)]
ﬁeff(t)

-3 0.0

moving interfaceZ| () that grows liket' [20]. In the vicin- 0 20000
ity of c* 4 !
_ 0 5 10
&(c)~(c—c*)7, (6) () In (1)
where v defines the(statig correlation length exponent and 1
v=4/3 in 2D percolatiorj19].
In the regime where pinning effects can be neglected, it 0

has been demonstrated that the quenched noise if(1Eq.
crosses over to thermal noisé]. In the FF models, this
sitation is realized well above*, where&(c) is essentially

of the order of the lattice constant agfc) <¢(t) readily
holds. Indeed, in this regime we find that the interface moves
with a constant velocity and its global width roughens as-
ymptotically as given by Eq4), with 8~1/3 andy~1/2, in
accordance with the KPZ universality class. For example, for 0.0
the NN model atc=0.95 we obtain=0.33(1) for L -4 0 15000
=20 000 andy=0.50(2) for a system size af=5000. In !

Fig. 1 we plotw(t) vst and the effective exponemq«(t) -5 5 10

=Inw(t)/Int that shows the asymptotic KPZ behavior. We (b) In (¢)

would like to point out that there is an initial time regime

where the width grows according to the uncorrelated random FIG. 1. (a) Global widthw(t) vst in two dimensions for the NN
deposition model, withw(t)~t2 For the NN model, this model withc=0.95 andL =20000. The inset shows the effective
regime is long lived only foc very close to unity21]. growth exponenBqu(t) vs t, where Bqu(t)=Inw(t)/Int. The exact

The asymptotic KPZ behavior foc>c* is not unex- KPZ value of 3=1/3 is shown by the horizontal ling¢b) Global
pected since the velocity of the interface in the FF models igvidth w(t) vs t for the 3D NN model, withc=0.97 andL XL
clearly tilt dependent, which generates the nonlinear tern¥200x200. In both cases averages were taken over 100 runs. The
proportional tox in Eq. (1). In Fig. 2a) we show the behav- inset showsBeg(t), with the horizontal value indicating the KPZ
ior of A as a function ot abovec* for the NN case. It has resultf~=0.24.
been calculated numerically by computing the average veloc-
ity v of the interface as a function of the global titt and ~ served appears at earlier times. In Figa)3we show the
fitting a parabola to it fom<1 [1,5]. The interesting result behavior of the global width for a system of side
is that\ displays nonmonotonic behavior and seems to even=20 000 atc=0.59 275(NN mode). We find that starting
tually decreasewhen approching the percolation transition. from early times, there is a scaling regime where the growth
In fact, we expect that(c)—0 asc—c* because the inter- €xponentg*=0.881). Simulations of the NNN model at
face is eventually forced to propagate in the infinite percolaC=0.407 give 8*~0.88, correspondingly. In this regime
tion cluster, which is known to be self-similar and isotropic parts of the interface become pinned by unburned regions on
at the percolation thresho[@2]. Since there is no preferred the lattice and the interface motion consists of large jumps,
growth direction ac*, the tilting of the interface should not With large local slopes appearing. This behavior indicates
affect the velocity of the interface any more. that the interfaces may not be self-affirie2].

This diminishing ofA on approaching* means that the The numerically observed crossover behavior can be for-
nonlinear term in Eq(1) becomes less and less important atmulated theoretically by assuming that it is induced by the
early times where(c)>&. For the continuum description undt_—zrlymg percolation transition. We write the following
to hold, however, the local slopes of the interface should alsgcaling form for the global widthv(c,t):
remain small. We have studied this numerically for various
values ofc close toc*, where two things can be observed for
the behavior of the global widttv(t,L). First, the range of
the late-time KPZ scaling regime becomes smaller in time as
c* is approached from above. Second, another regime wheighere r, denotes the crossover time to the KPZ regime and
well defined power-law scaling 0\iv(t)~t5* can be ob- the scaling functiorf(u) has the limits

'
—_

o

wn

In [w(?)]

t
Tc

w(c,t)=§(c)f( ) (7)
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FIG. 2. (@ X\ vsc in two dimensions with.=2000 for the NN FIG. 3. (a) w(t) vst in the 2D NN lattice model very close to
lattice model. The data were averaged over 1000 r@ms. vsc for  the percolation transition c=0.592 75, L=20 000). The inset
the continuum model, with =200. shows the effective growth exponeBix(t) and the horizontal line

indicates the value 0.88b) w(t) vst in the 3D NN lattice model
uft ifu<il very close to the percolation transitionc0.312, LXLXL
f(u)~ P (8) =1100x1100). The inset shows the effective growth exponent
u if u>1. Bex(t) vst and the horizontal line indicates the value 0.72.
Here g*~0.88 andB=1/3. Using Eq.(5) for ¢(c) and as- We have examined the interface roughness expogent

suming thatre(c)~(c—c*)"* we find that best data col- numerically by studying the interface dynamics as close to
lapse as shown in Fig. 4 is obtained for=1.3 andA  ¢* as possible. We have computed the generalitbebrder
=1.65. Takingrv=4/3 and the dynamic exponert given  height difference correlation functions

by the exponendl,;,;~1.13 associated with the scaling of the

minimum path distancgs,23|, A=vz* ~1.51. Thus our nu- Gq(r,t)=<[h(r,t)—ﬁ(t)]q>~rqxq for r<g (9
merical results are in good agreement with theory.

At c* where¢<£(c) for long times (< LZ"), the inter- by running the simulation until the interface finally sta{fsr
face is pinned by clusters formed by the unoccupied sites and finite systemand approximately traces out the edge of the
the quenched disorder dominates. The interface follows thpercolation cluster. For a self-affine interface there is only
“edge” of the infinite percolation cluster. The global rough- one roughness exponent and thys=yx, for all q
ness exponent* can be then be directly deduced from the =2,4,6... . Ournumerical results for & =2000 system at
geometric properties of the percolation transition. In particuc=0.5928(NN mode) give thaty,=0.545), x,=0.293),
lar [5,1], x* =v, /v)|, wherev, andy are the perpendicu- andys=0.21(2). This indicates that the interface associated
lar and parallel correlation length exponents of the criticalwith the percolation clusteas defined in the modé$ not
percolation cluster, respectively. Since the percolation clusself-affine atc* . The reason is most likely that the overhangs
ter in the FF model is isotropic and, = v|= v, the rough- in the front edge of the interface that follow the percolation
ness exponeng* =1 in all dimensions In this case, the cluster are removed. However, the scaling exponents for
exponent z* =dp,~1.13, which leads topB*=yx*/z* each higher-order correlation function that we have calcu-
= 1/d,,=~0.88, in excellent agreement with our simulations.lated seem to be very well defined, which is an indication of
These results indicate that the continuum description of Egmultiscaling similar to that seen in the longitudinal structure
(1) must break down at* for the present IPD cade4]. functions in the study of turbulend@5].
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FIG. 4. Crossover scaling functioi(t/ ;) of the global width 06
w(c,t), as defined in Eq(6). The unscaled data for different con- )
centrations ¢=0.594, 0.60, 0.605, 0.61, 0.615, 0.62, and 0.63,
from top to bottom, and. =1000) are shown in the inset. The data
collapse has been obtained using 1.3 andA =1.65. See the text -0.7
for details. —
<
We have also numerically verified the scaling of the av- E -0.8
erage velocityv (c) of the interface as a function af—c* =
near the percolation thresholdee Fig. 5. It is expected to
vanish as 0.9
v(c)=A(c—c*)". (10)
Our data for the NN model givA~1.14 and our best esti- -1.0 ” _3
mate for the velocity exponent i8=0.169(5) [the NNN #
model givesd=0.17(5)]. In order to check the consistency (b) In (c-c )
ofltf:!S rebsutlt, vanole that tger*e eXIStSIa[\ﬁe”_known scaling FIG. 5. (a) Scaling of the interface velocity vs c—c* for the
relation betweerv, z=, v, andx™, namely| 1, 2D NN lattice model, withL=2000. The straight line shows the
0= (7% — 1* 11 best fit to the data, withh=0.169 in Eq.(9). (b) Scaling of the
=(Z"=x")v. 1Y) terface velocityv vs c—c* for the 3D NN lattice model, with

L XL=100%x100. The straight line shows the best fit to the data,

. . . _ .
By using the .vallue.z =113, x" =1, andv—4{3 we obtain with #=0.26. The error bars here are smaller than the symbol sizes.
0=0.173. This is in very good agreement with our data.

Z* =di, [23]. As a consistency check, taken together with
B. Dynamics of two-dimensional interfaces the result thaty* =1, this implies that, at depinning transi-

i * K ok o i H
The 3D lattice model that we have studied is a simpletlon’ B X fz . 0'724.' Qur direct evaluat|on_ @ agrees

. . . very well with this prediction. We expect again that the in-
generalization of the 2D case to a simple cubic geometr

\/ . - : g
We only consider the NN case here. The behavior of th%ec:\ts:\?efswdeezgsg Lnostiigu;;gdihﬁew;aiilf affine’at

emerging surface near the percolation threshold is qualita- : .
tively similar to the 2D case. In particular, in the long time O_V(\)/ez hgve Slss.g C?Lcemitcejr:heevelgﬁg)r/]te)r(g;?ﬁ;t_ang find
limit for c>c* the interface roughens in time with the ~ " G(Wi)t.h z*l—% 38 *_1' gndxp—088 iy '0__0(:,33
growth exponeni3=0.24(2) as shown in Fig. (i), in ex- ﬁ( r)]V. . . .bI’X _d, andp=1. 'gh es a e
cellent agreement with numerical solutions of the2+1 which is in reasonably good agreement with our data.
KPZ equation and various discrete models that belong to the o )
KPZ universality clas$1,26,27. C. Flame front propagation in the continuum model

Closer to c*~0.316, we see the percolation-induced We have compared the dynamics of interface of the lattice
crossover. At=0.316 we find numerically that the interface model with a more realistic continuum reaction-diffusion
roughens with a growth exponegt =0.72(5) [Fig. 3(b)]. model of Refs.[6,7]. This model is a type of phase-field
Again, the exponents characterizing the interface can be olmodel that couples the evolution of a thermal diffusion field
tained from the exponents of the critical percolation clusterto a randomly distributed concentration field of reactants.
In particular, it is reasonable to assume that the global roughifhe model couples the effects of thermal dissipation and
ness exponeng* =1 since the cluster is isotropic. More- diffusion to heat generated by combustion via an Arrhenius-
over, the minimum path exponent is knownds=3 to be activated reaction term. To study front propagation, the
dmin=1.38(2) and this determines the dynamic exponentnodel is discretized on a 2D lattice and solved numerically.
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In analogy with the FF model, the lattice sites are randomly IV. SUMMARY AND DISCUSSION
filled with reactantstree, with an average normalized con- In this work we have studied the dynamics of interfaces in

centration ofc=c(x,y). After ignition of the bottom row of  random media through Monte Carlo simulations of some dis-
reactants at=0, the heat generated will ignite other occu- crete cellular automaton models of forest fires. We find that
pied lattice sites around it and the local fi@(k,y) corre-  away from the depinning transition induced by the isotropic
sponding to the sites of the burning reactants will quicklypercolation transition of the underlying lattice, the kinetic
approach zero as determined by the equations. A singleeughening is asymptotically described by the Kardar-Parisi-
valued interface in the model is defined by the maximum ofZhang[11] universality class. In the vicinity of the IPD tran-
the temperature field(x,y) for each columrx. sition, however, the behavior is found to be different. At the
Previously, it was shown that that the kinetic rougheningtransition, theglobal roughness exponent* and the growth
of the flame fronts generated by the continuum model belongxponentg* are completely determined by the geometric
to the thermal KPZ universality clagé,7]. In the limit of ~ properties of the percolation transition, leading to the result
almost uniform background density, the KPZ descriptionthaty* =1 andg* = 1/dy, in all dimensions. We have veri-
was also derived analytically from the set of equations forfied this numerically for the expone* in the 2D and 3D
the model[7]. The main difference with respect to the FF cases. However, by computing the roughness exponent of the
lattice model was that even very close to the percolatiod”ter,face from different correlation functions, we find that
threshold of the modet* ~0.20, there was no evidence of the interface is no longer self-affine, but seems to indicate
percolation induced crossover. Also, the continuum mode ultiscaling. This is most likely due to the removal of over-

* . . «hangs in the way the interface is defined in the models.
nearc* gave resu[ts that were consistent with the mean-fiel A comparison between the lattice models and the more
theory of percolation, e.gy~0.5 andd~0.5[7].

. . . realistic model of Refs[6—8] was made and qualitatively
In Fig. 2(b) we show the behavior of the nonlinear coef- similar behavior was found at high concentrations. Interest-

ficient A fo_r the continuum_ combustion model. Similarly to ingly, however, the two models displayed qualitatively dif-
the FF lattice model, we find that approaches zero far  ferent behavior foc— c*. In particular, the exponents com-
—c*. However, unlike the the lattice model, no crossoverpatible with the KPZ universality were shown to hold for all
behavior is observed &s—c*. This is explained as follows: yajues ofc studied in Refs[6,7]. We demonstrate that this
From the mean-field analysis of R¢T], the leading front of  can be understood on the basis of the mean-field nature of
the thermal field decays as the percolation transition exhibited by the continuum model.
Te(x)~e o 12 The_ mode!s studied here are par.ticularly interesting from
MF ' the point of view of the recent experiments on slow combus-
wherel ,=D/v, is the thermal diffusion length defining the tion of paper10,28. In these experiments, asymptotic KPZ
range of effective interactions in the model and thus also th&XPonents were verified for driven interfaces. This is in com-
scale of the intrinsic thickness of the interfaag,. The Pl€te agreement with all the models here well above perco-
constants, andD are the mean interface velocity and ther- lation, as well as the DPD universality class. Near percola-

mal diffusion constant, respectively. Using the result thafion, the assumption made on the basis of the earlier
v~ (c—c*)%5 we conclude thatv,,~(c—c*)~°5 On the experiments by Zhangt al. [9] has been that DPD effects

dominateg 1]. However, the most recent experiments indicate
[28] that the effective short-range exponents before KPZ as-
ymptotics may not be well defined.

other hand, in the mean-field percolation transition the cor
relation length scales a&(c)~(c—c*) %5 These results
imply that the thickness of the interface hhg same diver-
genceas the correlation length, within which the crossover

behavior should be observed. Thus everything that happens ACKNOWLEDGMENTS
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