27,336 research outputs found

    Quantum random number generation for 1.25 GHz quantum key distribution systems

    Full text link
    Security proofs of quantum key distribution (QKD) systems usually assume that the users have access to source of perfect randomness. State-of-the-art QKD systems run at frequencies in the GHz range, requiring a sustained GHz rate of generation and acquisition of quantum random numbers. In this paper we demonstrate such a high speed random number generator. The entropy source is based on amplified spontaneous emission from an erbium-doped fibre, which is directly acquired using a standard small form-factor pluggable (SFP) module. The module connects to the Field Programmable Gate Array (FPGA) of a QKD system. A real-time randomness extractor is implemented in the FPGA and achieves a sustained rate of 1.25 Gbps of provably random bits.Comment: 6 pages, 8 figure

    Measurement of Spin Polarization by Andreev Reflection in Ferromagnetic In1-xMnxSb Epilayers

    Full text link
    We carried out Point Contact Andreev Reflection (PCAR) spin spectroscopy measurements on epitaxially-grown ferromagnetic In1-xMnxSb epilayers with a Curie temperature of ~9K. The spin sensitivity of PCAR in this material was demonstrated by parallel control studies on its non-magnetic analog, In1-yBeySb. We found the conductance curves of the Sn point contacts with In1-yBeySb to be fairly conventional, with the possible presence of proximity-induced superconductivity effects at the lowest temperatures. The experimental Z-values of interfacial scattering agreed well with the estimates based on the Fermi velocity mismatch between the semiconductor and the superconductor. These measurements provided control data for subsequent PCAR measurements on ferromagnetic In1-xMnxSb, which indicated spin polarization in In1-xMnxSb to be 52 +- 3%

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies

    Full text link
    We calculate analytically the past asymptotic decay rates close to an initial singularity in general G_0 spatially inhomogeneous perfect fluid models with an effective equation of state which is stiff or ultra-stiff (i.e., γ2\gamma \ge 2). These results are then supported by numerical simulations in a special class of G_2 cosmological models. Our analysis confirms and extends the BKL conjectures and lends support to recent isotropization results in cosmological models of current interest (with γ>2\gamma > 2).Comment: Accepted by CQ

    Sensory and motor deficits exist on the non-injured side of patients with unilateral tendon pain and disability - implications for central nervous system involvement: a systematic review with meta-analysis

    Get PDF
    Introduction Tendinopathy manifests as activity-related tendon pain with associated motor and sensory impairments. Tendon tissue changes in animals present in injured as well as contralateral non-injured tendon. This review investigated evidence for bilateral sensory and motor system involvement in unilateral tendinopathy in humans
    corecore