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A SYSTEMATIC REVIEW OF SENSORY AND MOTOR SYSTEM DEFICITS IN UNILATERAL 

TENDINOPATHY 

 

ABSTRACT 

 

Introduction 

Tendinopathy manifests as activity related tendon pain with associated motor and sensory 

impairments. Tendon tissue changes in animals present in both injured and contralateral non-

injured tendon. This review investigated evidence for bilateral sensory and motor system 

involvement in unilateral tendinopathy in humans.  

 

Methods 

A comprehensive search of electronic databases, and reference lists using keywords relating to 

bilateral outcomes in unilateral tendinopathy was undertaken. Study quality was rated with the 

Epidemiological Appraisal Instrument and meta-analyses carried out where appropriate. 

Analysis focused on comparison of measures in the non-symptomatic side of patients against 

pain-free controls. 

 

Results 

The search revealed 5791 studies, of which 20 were included (117 detailed review, 25 met 

criteria). There were 17 studies of lateral epicondylalgia (LE) and one each for patellar, Achilles 

and rotator cuff tendinopathy. Studies of LE were available for meta-analysis revealing the 

following weighted pooled mean deficits: pressure pain thresholds (-144.3 kPa; 95% CI -169.5 
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to -119.2, p < 0.001), heat pain thresholds (-1.15 °C (95% CI -2.09 to -0.22), p=0.001), cold pain 

thresholds (-3.09 °C; 95% CI -4.38 to -1.80, p < 0.001), and reaction time (35.1 ms; 95% CI 28.5 

to 41.7, p < 0.001).  

 

Discussion 

Deficits in sensory and motor systems present bilaterally in unilateral tendinopathy. This 

implies potential central nervous system involvement. This indicates that rehabilitation should 

consider the contralateral side of patients. Research of unilateral tendinopathy needs to 

consider comparison against pain-free controls in addition to the contralateral side to gain a 

complete understanding of sensory and motor features. 



Page 6 of 37 

 

INTRODUCTION 

Tendinopathy impacts substantially on participation in physical activity[1] and is 

characterized clinically, by activity-related pain, focal tenderness on palpation, and decreased 

functional capacity of the segment (e.g., strength, movement)[2]. Historically, tendinopathy has 

been considered as local degeneration with pathological changes including increased type III 

collagen fibres, an associated increase in ground substance, and subsequent loss of hierarchical 

structure of the tendon [3, 4]. This loss of cellular homeostasis[5] has been suggested to 

contribute to neovasularisation, which has been variously proposed to relate to features as 

diverse as tendon repair[6] and chronic pain[7]. Studies using an animal model of unilateral 

tendinopathy have confirmed local signs including; degenerative changes, 

neovascularisation[8], and changes in the mechanical properties of the tissue including 

decreased elasticity and maximum stress at failure[9]. This diverse array of changes is likely to 

affect the sensory and motor systems, yet there is limited understanding of how they are 

related. 

 An interesting and paradigm challenging observation from an animal model of repetitive 

unilateral exercise has been the presence of bilateral tendon changes, that is, biological changes 

in the tendon of the non-exercised limb. This was evidenced by increased infiltrating 

macrophages not only in the tendon of the injured limb but also in the contralateral limb[10], a 

significant increase in tenocytes in both limbs[11], and a bilateral increase in vascularity of the 

tendon by week 3. These observations lead to speculation of a centrally mediated process in the 

pathogenesis of tendinopathy, which underpins the activity related pain and disability, but this 

has received limited attention in the literature. 

 The biologic evidence of bilateral tendon pathology in a unilateral exercise-induced 

tendinopathy underpins the speculation that bilateral changes are likely to manifest in patients 

who present with a unilateral tendon problem and the pathogenesis of this condition may be 

more complex than is readily explained by local pathology. This systematic review aimed to 
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address the issue of motor and sensory system changes associated with activity related pain 

associated with the tendon . To this end we systematically assessed the literature of human 

experimentation to ascertain whether changes in the motor or sensory systems occur in the 

contralateral side of patients with unilateral tendinopathy. 

 

METHODS 

Search strategy  

 A comprehensive search of electronic databases (Medline – via Ovid, Scopus and 

PubMed) was undertaken by LH to identify all English-language studies for all years up to May 

2013. Keyword, title and abstract information were used. Search terms were ‘tennis elbow AND 

bilat*’ (the symbol is used for identifying all words starting with bilat, e.g. bilateral, bilaterally, 

bilateralism), OR jumper’s knee AND bilat* OR ‘tendin* AND bilat*’ OR ‘tendo* AND bilat*’ OR 

‘epicondy* AND bilat*’. A thorough hand-search of the reference lists for all included studies 

was undertaken to identify articles that may not be listed on electronic databases, articles 

without abstracts that may have been missed by the initial search strategy, articles from 

networks or conferences and gray literature (i.e. theses, and books).   

Study selection  

 Upon retrieval from the above search strategy all titles and abstracts were scanned by 

LH to identify studies that included bilateral measurement in patients with unilateral 

tendinopathy, and with a healthy cohort included for comparison. An a priori decision was made 

that a deficit on the side contralateral to the symptoms could be confirmed if the measure of 

sensory or motor function of the contralateral limb was different to that reported for the 

corresponding limb of control participants. Presence of biliateral deficits could not be 

determined from comparison between sides within a participant with unilateral symptoms as 

the absence of difference between sides could indicate that either; (i) no deficit was present for 
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either side or, (ii) a deficit was present for both sides. Thus studies without a healthy control 

group for comparison could not be included. 

For the purposes of this review, we defined the motor system broadly as encompassing 

bone, joint, tendon, and muscle as well as neuromuscular control. The sensory system was 

defined as involving nociceptive and proprioceptive systems, usually measured with 

quantitative sensory testing. 

All eligible studies were recorded and the full text was obtained. LH then undertook a 

detailed evaluation using pre-determined criteria based on study design, clinical diagnosis of 

unilateral tendinopathy and quantitative reports of bilateral measures. Only data representative 

of unilateral tendinopathy were included in this review. Studies that included individuals with 

both bilateral and unilateral tendinopathies were retained if data were reported separately for 

the unilateral cases. Reviews, case studies, letters to the editor and studies of animals were 

excluded, along with non-English language publications.  

Quality assessment 

 The quality of the included studies was scored using the Epidemiological Appraisal 

Instrument (EAI)[12]. The EAI was condensed to 26 items. As this review was not focused on 

clinical trials, items related to randomisation, follow up, and environmental variables were not 

applicable and excluded from the assessment. Prior to the quality evaluation, detailed criteria to 

determine each response were modified from the original tool to match the purpose of this 

review and agreed upon by all assessors. Two independent assessors scored the studies. Any 

disagreements were reviewed by consultation of a third party. Each item was independently 

scored using the standardised scale; “Yes” (score = 1), “Partial” (score = 0.5), “No” (score = 0), 

“Unable to determine” (score = 0), or “Not applicable” (item was removed from scoring). Studies 

were given an overall score, which was derived as an average of the total for all 26 items (range 

0-1). 
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Data extraction  

 LH completed data extraction, with all queries discussed and resolved by all assessors. 

Data describing the sample population and study methodology as well as the descriptives for 

the reported measures of pain, sensory and motor function were extracted for the contralateral 

side in unilateral tendinopathy and the corresponding side in controls. If additional information 

was required authors were contacted.  

 Studies were reviewed for measures of pain, sensory and motor functions. Measures 

were considered relevant if they measured any aspect of pain system function (e.g. pressure or 

temperature pain threshold) and physical features of anatomy (e.g. wrist angle), sensory 

function (e.g. proprioception) and motor function (e.g. reaction time [simple and complex], 

corticomotor excitability, movement, muscle output [e.g. grip strength]). 

Statistical methods 

 The reliability of the quality assessment was evaluated using SPSS 17 software (SPSS 

Inc, Chicago, IL, USA). Kappa statistics were used to report the total inter-rater reliability 

between the two assessors. Inter-rater reliability was considered as poor (<0.00), slight (0.00–

0.2), fair (0.21–0.4), moderate (0.41–0.6), substantial (0.61–0.8), or almost perfect (0.81–

1.0)[13]. Where possible and appropriate the data were pooled with formal meta-analytical 

techniques using RevMan 5 (Copenhagen, Denmark: The Nordic Cochrane Centre, The Cochrane 

Collaboration, 2006). A meta-analysis was performed using a random effects model to obtain 

weighted pooled mean differences and their 95% confidence intervals. I2 was calculated and 

used as an indicator of the extent of between trial heterogeneity. Differences in sensory and 

motor system measures between the side contralateral to the tendinopathy symptoms in 

patients and the corresponding side in pain-free control participants were calculated such that 

negative differences indicate that the measure for the patient with unilateral tendinopathy 

represented a deficit relative to that for the control participants, and positive differences 

indicate the opposite. Standardised mean differences (SMD) were calculated where meta-
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analysis was not possible. SMDs were interpreted as small 0.2, medium 0.5 and large 0.8 effect 

size[14]. 

 

RESULTS 

Database search 

 The comprehensive search strategy yielded a total of 5791 publications from electronic 

databases and hand searched reference lists. All titles and abstracts were screened and 117 

potentially relevant studies were identified. Of these, 25 satisfied the selection criteria and 

reported bilateral nociceptive, sensory and motor measures of participants with unilateral 

tendinopathy contrasted with data for controls (Figure 1). Two studies were excluded as they 

reported secondary presentation of data published elsewhere[15, 16]. Seven authors were 

contacted during data extraction to provide additional information for the following reasons: 

data only presented graphically[17]; affected and unaffected limb data combined[18-20]; no 

control data for a specific outcome measure[21], and insufficient details for data[22, 23]. Three 

authors supplied data on at least one outcome; one provided insufficient useable data; and two 

were unable to be contacted. Of the 25 studies that satisfied the inclusion criteria a total of 20 

were included in the review. The composition of these per anatomical region included 17 LE, 1 

patella tendinopathy, 1 Achilles tendinopathy, and 1 rotator cuff tendinopathy. 

Study characteristics 

Studies varied in terms of location, timing and population. Eight studies (40%) were 

conducted in Australia, four (20%) in Spain, two (10%) in Canada, and one (5%) each in the 

United States of America, United Kingdom, Finland, Norway, Sweden and Denmark. One study 

(5%) was published in the 1980s; two (10%) in 1990s; 11 (55%) in 2000s, and six (30%) since 

2010. Sample sizes varied widely from 19[24] to 238 participants[25]. In general the number of 

LE participants did not match the number of controls.   
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Quality assessment 

 The overall agreement between the two reviewers was almost perfect (Kappa= 0.897, 

p<0.01)[13] with 484 agreements out of 520 decisions. The results from the quality assessment 

using the modified EAI[12] demonstrated a median score of 0.46 (range 0.29 – 0.63) out of a 

possible 1 (Appendix A). Overall the quality assessment revealed only 15% (3 out of 20) used 

diagnostic imagining as part of the eligibility criteria; only 25% (5/20) clearly described their 

study population and how and where they recruited participants, and only 20% (4/20) used 

priori sample size calculations. Only 35% (7/20) of the studies described their study design and 

no longitudinal or prospective studies were identified. The two reviewers were unable to 

determine if any study blinded the participants to the outcome measures and only 15% (3/20) 

of studies blinded the assessors to the participant’s condition during the experiments. Despite 

the importance of using validated measures only 5% (1/20) of the studies reported the validity 

of their main measures. No studies included prior history of the condition in the analysis, 20% 

(4/20) adjusted for individual covariates and confounders, 10% (2/20) reported the results by 

severity of the condition and 15% (3/20) reported the results by subgroups defined by age and 

gender.  

Meta analysis  

Not all studies contributed data to the meta-analysis as many were the only study for 

tendinopathy in a specific anatomical location (i.e. patella tendinopathy, rotator cuff 

tendinopathy and Achilles tendinopathy) and there were differences in measurements used, 

with some reported in only one study (e.g. corticomotor excitability or electrical pain 

thresholds). The studies that could not be included in the meta-analysis are discussed 

individually in the “appraisal” section. Only studies of patients with LE could be subjected to 

meta-analyses. Of these, six studied pressure pain threshold at sites other than the elbow, three 

studied heat pain and cold pain thresholds bilaterally, and two studied reaction time and speed 

of movement bilaterally. 
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 The weighted pooled mean difference demonstrated that pressure pain thresholds were 

-146.0 kPa (95% confidence interval [CI] -189.4 to -102.7) lower in the participant’s limb that 

was contralateral to the unilateral LE symptoms than the corresponding side of controls (p < 

0.001) (Fig. 2). Heat pain thresholds were -1.2 °C (95% CI -2.1 to -0.2) lower and cold pain 

thresholds were -3.1 °C (95% CI -4.4 to -1.8) higher on the contralateral side of participants 

with unilateral LE than the corresponding side of controls (p < 0.001) (Fig. 3).  

Reaction time to lift the hand off a button was 37.8 ms (95% CI 24.8 to 50.7) slower and 

two choice reaction time in a movement to a target was 36.0 ms (95% CI 25.8 to 46.1) slower in 

the contralateral side of patients than the corresponding side of controls (p <0.001) (Fig. 4). 

Speed of movement was 20.0 cm/s (95% CI 35.3 to 4.6) slower in the contralateral side of 

patients than controls (p <0.001) (Fig. 4). 

Appraisal  

 Studies unable to be included in the meta-analysis are considered in four key themes 

related to changes in (i) motor, (ii) sensory, and (iii) nociceptive systems, as well as (iv) variants 

in anthropometry/anatomy. This section presents differences between the contralateral limb of 

patients and data for control participants. All included studies of sensory, motor and nociceptive 

systems and the majority of the muscle strength studies investigated unilateral LE. 

Motor measures 

A study of corticomotor excitability (resting motor threshold, stimulus response curve, 

silent period and motor evoked potential), as measured by transcranial magnetic stimulation, 

demonstrated no differences between the affected or contralateral limb in 14 patients and 16 

controls[26].  

Electromechanical delay during gripping (n=13 patients and controls)[27] is longer in 

patients’ contralateral side (mean:  64 ±24 ms) compared to controls (mean: 39 ±14 ms; P < 

0.001), but does not differ between sides within patients. Rate of force development (in the 
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same study) did not differ between the contralateral side of patients and controls, but is slower 

for the symptomatic side within patients (P = 0.007).  

Two studies assessed one-choice reaction time of pointing to a target and speed-of-

movement in patients compared to controls[25, 28], which could not be meta analysed due to 

significant heterogeneity, I² = 76% (P < 0.001). Both demonstrated slower reaction time on the 

contralateral side of the patients than the controls (13% [SMD 0.84] and 22% [SMD 1.13])[25, 

28].  

Five studies investigated maximal grip strength, using a hand held dynamometer, in 

patients with unilateral LE[23, 27, 29-31], which could not be meta analysed due to significant 

heterogeneity I² = 89% (P < 0.001). Three demonstrated a small (SMD 0.24 to 0.36)[27, 29, 30], 

and one a large (SMD 2.38) reduction in strength in patients than controls[31] (See Appendix B 

for mean±SD). The remaining study demonstrated a greater strength (SMD -0.59) in patients 

(284 ±79N) than controls (mean 234 N ±86)[23]. All studies, except one[31] demonstrated a 

significant difference between sides within the patient group[23, 27, 29, 30].  

 Studies of other strength measures have focused on upper limb tendinopathy, 

particularly unilateral LE. Isometric elbow flexion and extension strength has been shown to be 

no different between 164 patients with unilateral LE and 54 controls[32] (patients - flexion; 

246.7±40.4 N, extension 185.9±31.8 N; controls -  flexion; 245.7±40.4 N, extension; 185.9±32.3 

N) (SMD Flexion 0.02, SMD Extension 0.00). Wrist extension strength has been shown to be 

24% less in 20 patients (87.0±40.3 N) than controls (114.0±30.3 N) (SMD 0.75)[30], and the 

strength was less in the symptomatic side in patients. Another study reported isometric 

strength measures of a range of upper limb muscles in 16 patients and controls and showed a 

strength deficit of 16-29% (Table 1)[31]. There was no significant difference between sides in 

the patients for any of the strength measures (p = >0.05). 
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Isometric strength has also been assessed for unilateral rotator cuff tendinopathy. 

Rather than a decrease, isometric shoulder abduction strength in 10 patients with unilateral 

rotator cuff tendinosis was 15% greater than that for 9 controls[24] (patients: 223±89 N; 

controls: 189±63 N, SMD 0.44). Strength was less on the patient’s affected (163±66 N) than 

contralateral side. 

Sensory measures 

Proprioceptive acuity has been assessed by the ability to discriminate between 2 

weights between 100 g and 130 g in steps of 2 g increments using custom-built equipment[26]. 

Weber’s fraction, which expresses the acuity threshold (minimum difference in weight that can 

be detected) as a proportion of 100 g, was not different between the contralateral side of 

patients and controls (4.9±3.2%; and 5.4±2.1%, respectively, P >0.05)[33], but was less for the 

affected side (8.2±3.0%, P = 0.001) than the contralateral side.  

Nociceptive system measures 

 In contrast to the meta-analysis for pressure and temperature pain thresholds, a study 

of electrical pain thresholds by means of stimulation to the skin over extensor carpi radialis, in 

18 patients and 16 controls, demonstrated no significant difference between the contralateral 

side of the patients and controls[34], but the affected side was significantly more sensitive than 

the contralateral side.  

Muscle trigger points have been assessed using a standardised method by an 

experienced assessor blind to the patient’s condition, in 25 patients and 20 controls[21]. The 

number of latent trigger points in the contralateral side of patients (2.2, 95% CI 1.8-2.6) was 

higher than that in controls (0.4, 95% CI 0.0-.07, P <0.001, SMD 0.89). 

Anatomic/anthropometric measures 

In terms of anatomical factors, evaluation of wrist position during a spontaneous 

gripping task in 40 patients and 40 controls[23] showed patients gripped in 11° (95% CI 7° to 
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14°, P < 0.001) more flexion than controls, bilaterally. In patients with patella tendinopathy 

[18], longitudinal arch height of the foot, during maximum weight bearing is lower in patients 

(42.0±7.4 mm) than controls (50.4±5.9 mm; SMD 1.29), but there was no differences between 

sides within the patient group (affected: 42.3±8.2 mm). There was no difference in an indirect 

measure of hamstring length or ankle dorsiflexion between groups (Appendix B).  

Two imaging studies used ultrasound to measure local anatomy at the Achilles tendon 

(in unilateral mid-portion Achilles tendinopathy)[35] and the common extensor tendon of the 

elbow (in LE)[20], without blinding of the sonographer. The thickness of the Achilles tendon 

was slightly greater and the echogenicity less on the contralateral side of 11 patients with 

Achilles tendinopathy (6.6±1.2 mm and 82.9 ±12.9 U, respectively) than that of 9 controls 

(5.0±1.3 mm and 119.3±13.5 U, respectively; P = <0.05)[35]. The affected tendon (9.4±1.2 mm) 

was thicker than the contralateral tendon, but there was no difference in echogenicity 

(76.7±11.7 U). Another study investigated the accuracy of power Doppler imaging for diagnosis 

of unilateral LE[20][20]. There was a tendency towards a thicker tendon on the contralateral 

side of patients (n = 18) than controls (n = 19), which was in the order of 0.50 mm (95% CI 0.00 

to 0.99, P = 0.05) or 11% of the control group mean tendon thickness (4.47 mm). This difference 

was comparable to the 15% greater thickness of the affected tendon (mean - 5.82 mm; 

difference - 0.86 mm [95% CI -1.35 to -0.36; p=0.002) than the unaffected tendon in the LE 

group.  

 

DISCUSSION  

 This review provides a synthesis of research findings of nociceptive, sensory and motor 

differences, compared with pain-free controls, in the limb contralateral to the side of symptoms 

in patients with unilateral tendinopathy. In general, meta-analysis of data from multiple studies 

provides evidence of significant deficits in the nociceptive, sensory and motor systems, 

including pressure and thermal pain thresholds, simple reaction time, two-choice reaction time, 
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and speed of movement. These results align with findings from other studies that could not be 

included in the meta-analyses (due to study population or measurements) and studies of other 

musculoskeletal conditions that demonstrate contralateral nociceptive, sensory and motor 

system deficits in patients with unilateral carpal tunnel syndrome[36], and chronic wrist 

pain[37]. For instance, Fernandez-de-las-Penas[36] reported lower pressure pain thresholds 

over the peripheral nerves, the carpal tunnel and the C5-C6 zygapophyseal joints of the non-

affected side in females with unilateral carpal tunnel syndrome than for pain-free controls. 

Smeulders[37] quantified motor control using a writing task with measures of fluency, size and 

velocity of stroke patterns in patients with unilateral chronic wrist pain and controls. The 

patients were significantly less fluent than the controls in both their affected and contralateral 

arm, suggesting bilateral motor system deficits.  

 It is tempting to speculate that nociceptive system deficits might be attributed to 

abnormalities of central pain processing. Central sensitisation arises from convergence of 

noxious and non-noxious inputs on the wide dynamic range neurons in the dorsal horn[38] with 

subsequent enhanced sensitivity to painful (hyperalgesia) and normally non-painful (allodynia) 

stimuli over an area extending beyond the injured segment. Central sensitization is present in 

many chronic pain conditions such as fibromyalgia, low back pain, complex regional pain 

syndrome[39], migraine, tension-type headache, and myofascial pain syndrome[38]. The 

widespread hyperalgesia extending to the contralateral limb in unilateral tendinopathy appears 

similar to that present in other chronic pain states.  

 Several mechanisms may explain the biliateral changes in motor system function. First, 

it is well known that unilateral exercise leads to strength and skill adaptations bilaterally 

through a process known as “cross education”[40]. Significant gains in contralateral 

strength[41, 42] and skill[43] have been shown with unilateral exercise, regardless of whether 

it is active volitional, facilitated (electrical stimulation) or imagined. The reverse, due to a 

unilateral reduction in activity might explain the effects in the contralateral side. The underlying 
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mechanisms for cross education are poorly understood, but likely involve spinal and supra-

spinal centres. As H-reflex amplitudes (which largely depend on spinal motoneuron excitability) 

do not change in the untrained muscle, despite strength gain [44-46] supra-spinal mechanisms 

are more likely. Relevant cortical mechanisms are thought to involve a complex network of 

inter-hemispheric connections and ipsilateral corticospinal fibres from the primary motor 

cortex, which provide neural drive to the contralateral muscle during unilateral contraction[47, 

48]. Corticospinal excitability (measured by transcranial magnetic stimulation) to hand muscles 

increase during contraction of the opposite side[49-51], which implies inter-hemispheric 

interactions. Functional magnetic resonance imaging (fMRI) has demonstrated that changes in 

activation of the contralateral motor areas (pre-motor and primary motor cortex) are similar in 

both sides during unilateral activation[52-54], and unilateral exercise elicits activation in the 

contralateral somatosensory[54] and left temporal cortices (involved in movement 

memory)[52]. This finding suggests that the somatosensory cortex may play a pivotal role in 

bilateral strength gains with unilateral training. It remains unknown, but possible that 

deconditioning of the affected limb in unilateral tendinopathy exhibits a negative form of cross 

education. This requires further investigation. Second, an alternative explanation for the 

bilateral motor changes is that these features were different from the healthy controls in these 

individuals prior to the onset of tendinopathy and the motor differences could even contribute 

to the condition’s development. This requires consideration in longitudinal studies. 

 The studies excluded from the meta-analysis demonstrated consistent lower grip 

strength on the contralateral side of patients with unilateral LE than controls in four of five 

studies[23, 27, 29, 30] and medium to large strength deficits at other distal and proximal joints 

of the upper limb[30, 31]. There were no differences for the direct comparison of elbow flexion 

and extension between the contralateral side of patients and the controls[32].  

 Two studies revealed a substantial increase in strength of the contralateral side of 

patients compared with controls[23, 24]. One demonstrated increased grip strength on the 
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contralateral side of patients with unilateral LE (SMD -0.59)[23], whereas the other 

demonstrated increased shoulder abduction strength in patients with unilateral rotator cuff 

tendinosis (SMD -0.44)[24]. There are several possible explanations. First, it is possible that the 

augmented strength is secondary to a compensatory increase in functional use of the unaffected 

side to protect the injured limb. Second, the patient group might have been stronger than the 

controls prior to the development of the unilateral tendinopathy as a result of activity, which 

may underpin the increased use of the limb leading to the tendinopathy[23]. Both scenarios 

could be addressed by adoption of a prospective longitudinal study design. 

 Bilateral nociceptive, sensory and motor system deficits in unilateral tendinopathy 

require consideration in both clinical practice and research for several reasons. First, the 

findings of this review highlight the importance of inclusion of a healthy matched control group 

for comparison in studies of features of tendinopathy. Second, the presence of differences 

relative to controls on both the symptomatic and non-symptomatic sides suggests that there 

could be benefit from rehabilitation that addresses motor, sensory and nociceptive system 

features on both sides. Specific training of the contralateral limb may also provide additional 

benefits to the affected limb through cross education, via mechanism discussed above. Third, 

patients participating in sports or occupations requiring rapid bilateral reaction time and 

movement speed such as trap shooting and boxing, may require specifically targeted training to 

address deficits that may present bilaterally.  

 This review has some limitations, which require consideration. The meta-analyses 

included only a small number of studies with small sample sizes and of only one tendinopathy 

(i.e. LE). There is a clear need for additional studies with larger samples sizes across a range of 

tendinopathies. The quality of studies varied substantially and was overall quite low. A key 

limitation was the lack of confirmation of localised tendinopathy using diagnostic imaging. Only 

two studies required confirmation of pathology with diagnostic imaging for inclusion into the 
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study, and even then neither reported the measure’s reliability and only one used diagnostic 

imaging to verify healthy tendon in controls.  

 In conclusion this review highlights that nociceptive, sensory and motor system deficits 

in the side contralateral to the affected limb in patients with unilateral tendinopathy are 

common, particularly in LE, which has received most attention in the literature. These data 

support involvement of the central nervous system in the expression of pain and disability. The 

results clearly demonstrate that the contralateral side of the body cannot be used as a reference 

standard for assessment, either in clinical practice and research, and that treatments other than 

those that target local pathology are likely to be required.  
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Figure 1. Selection process for inclusion in the review 
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 No healthy controls (n = 45) 
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Total 37 retrieved for full text evaluation 

Total 111 reviewed against inclusion criteria 

Publications excluded after communication with authors    (n 

= 5) 



Page 25 of 37 

 

Figure 2. Forest plot for pressure pain thresholds 

 
Note: LE = lateral epicondylalgia, H = healthy control, kPa = kilopascals  
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Figure 3. Forest plot for temperature pain thresholds 

 
Note: LE = lateral epicondylalgia, H = healthy control, C° = degrees Celsius  
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Figure 4. Forest plot for reaction time and speed of movement 

 
Note: LE = lateral epicondylalgia, H = healthy control, RT = reaction time, SoM = speed of movement, ms = 

milliseconds, cm/s = centimeters per second  
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Table 1. Strength measures between the contralateral side of patient and healthy controls 

(Mean ±SD) 

 Patient 

(n = 16) 

Control 

(n = 16) 

 SMD 95% CI 

Metacarpo-phalangeal joint extension 41±16 N 58±16 N 1.04 [0.29, 1.78] 

 

Metacarpo-phalangeal joint flexion 67±36 N 91±20 N 0.80 [0.08, 1.53] 

 

Wrist joint extension 70±44 N 97±24 N 0.74 [0.02, 1.46] 

 

Wrist joint flexion 95±56 N 119±24 N 0.54 [-0.16, 1.25] 

 

Shoulder internal rotation 113±64 N 144±48 N 0.53 [-0.17, 1.24] 

 

Shoulder external rotation 81±40 N 97±28 N 0.45 [-0.25, 1.15] 

 

Shoulder abduction 127±68 151±40 N 0.42 [-0.28, 1.12] 

 

Note: SMD = standard mean difference, 95% CI = 95% Confidence interval, N = Newtons 
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Appendix A – Results from the quality assessment 
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Alizadehkhaiyat [31] 1 1 0 0.5 0 0 0 0 1 1 1 1 0 0.5 UTD 0 N/A 0 UTD 0.5 0 UTD 0 0 0 0 0.30 

Bisset [23] 1 1 1 0.5 0.5 0.5 0 1 1 0.5 0.5 1 0 0.5 UTD 0 N/A 0.5 UTD 1 0.5 0.5 0 1 0 1 0.54 

Bisset [25] 1 1 1 1 0.5 0.5 0.5 1 1 1 1 0 0.5 0.5 UTD 0 N/A 1 UTD 1 0 UTD 0 1 1 1 0.62 

Brox [24] 1 1 0 0 0.5 0.5 0 0 1 1 1 1 0 0 UTD 0 N/A 0 UTD 1 0 1 0 0 0 0 0.36 

Chourasia [27] 1 1 1 0.5 1 1 0 1 1 1 1 0 1 0.5 0.5 0 0 0 UTD 1 1 0 0 0.5 0 0 0.56 

Coombes [32] 1 1 1 0.5 0.5 1 0 1 1 1 1 1 0 0.5 UTD 0 N/A 0 UTD 1 0.5 UTD 0 1 0 0 0.52 

Coombes [29] 1 1 1 0.5 0.5 1 0.5 0 1 1 1 1 0 0 UTD 1 N/A 0 UTD 1 0.5 1 0 0 1 1 0.60 

Crossley [18] 1 1 1 0 1 1 0 1 1 1 1 1 0 0 UTD 0 0.5 0 UTD 1 0 0.5 0 1 0 0 0.50 

Dessurault [26] 1 1 0 0.5 0.5 1 0 0.5 1 0.5 0.5 0.5 0 1 UTD 0 N/A 0 UTD 0 0 UTD 0 0.5 0 0 0.34 

Dessurault [33] 1 1 0 0.5 0.5 1 0 0.5 1 0.5 0.5 1 0 1 UTD 0 N/A 0 UTD 0 0 UTD 0 0.5 0 0 0.36 

du Toit[20] 1 1 1 1 1 0.5 1 N/A 1 1 1 1 0 0.5 1 1 0 0.5 N/A 0 0 1 0 N/A 0 0 0.63 

Fernandez-Carnero 

[21] 
1 1 0 0.5 0.5 0.5 0 0.5 1 1 1 1 0 1 UTD 0 N/A 0.5 UTD 0.5 0 0 0 0 0 0 0.40 



 

Note: Yes = 1 (Black); Partial = 0.5 (Grey); No = 0 (White); UTD = unable to determine (White) = 0; N/A = not applicable = item removed from scoring (White); Total score out of 1  

Fernandez-Carnero 

[55] 
1 1 0 1 0.5 0.5 0 0 1 1 1 1 0 0 UTD 0 N/A 0 UTD 1 0.5 1 0 0 0 0 0.42 

Fernandez-Carnero 

[56] 
1 1 0 1 0.5 0.5 0 0.5 1 1 1 1 1 1 UTD 0 N/A 1 UTD 1 0 1 0 0.5 0 0 0.56 

Fernandez-de-las-

Penas [57] 
1 1 0 0.5 0.5 0.5 0 0 1 1 1 1 1 0.5 UTD 0 N/A 1 UTD 1 0 1 0 0 0 0 0.48 

Grigg [35] 1 1 0 0 0.5 1 0 1 1 1 1 1 0 1 UTD 0 N/A 0 UTD 0 0 UTD 0 0 0 0 0.38 

Lundeberg [34] 0.5 1 0 0.5 0 0.5 0 0 1 1 1 1 0 0.5 UTD 0 N/A 0 UTD 0 0 UTD 0 0 0 0 0.28 

Pienimäki [28] 0.5 1 0 0.5 0.5 0.5 0 1 1 1 1 1 0 1 UTD 0 N/A 0 UTD 1 0 1 0 0.5 0 0 0.46 

Ruiz-Ruiz [58] 1 1 0 1 0.5 0.5 0 0.5 1 1 1 1 1 1 UTD 0 N/A 0 UTD 0.5 0 UTD 0 0.5 0 0 0.46 

Slater [30] 1 1 0 0.5 0.5 0.5 0 0 1 1 1 1 0 1 UTD 0 N/A 0 UTD 0 0 1 0.5 0 0 0 0.40 

% scoring “Yes” 90 100 35 25 15 35 5 35 100 85 85 85 20 40 5 10 0 15 0 55 5 40 0 20 10 15  



 

Appendix B – Details of papers included in systematic review 



 

Study Condition Population 
Dominant 

side 

Affected 

Side 
Outcome Specific Measure 

Contralateral Arm 

of Unilateral 

Tendinopathy 

Corresponding 

Arm of Control 
SMD 95% CI 

Alizadehkhaiyat [31] LE 
Patients (n =16; M 8, F 8), 

Controls (n = 16; M 9, F 7) 

R) = NR 

L) = NR 

D) = 16 

ND) = 0 

Strength 

GS 

MCP ext 41±16 N 58 ±16 N 1.04 [0.29, 1.78] 

MCP flx 67 ±36 N 91 ±20 N 0.80 [0.08, 1.53] 

Wrist ext 70±44 N 97 ±24 N 0.74 [0.02, 1.46] 

Wrist flx 95±52 N 119 ±24 N 0.58 [-0.13, -1.29] 

Sh adb 127±68 N 151 ±40 N 0.42 [-0.28, 1.12] 

Sh ER 81±40 N 97 ±28 N 0.45 [-0.25, 1.15] 

Sh IR 113 ±64 N 144 ±48 N 0.53 [-0.17, 1.24] 

GS 287 ±100 N 342 ±88 N 0.57 [-0.14, 1.28] 

Bisset [23] LE 
Patients (n =40; M 24, F 16), 

Controls (n = 40; M 24, F 16) 

R) = 36 

L) = 4 

D) = 24 

ND) = 16 

GS 

Wrist angle 

GS 284 ±79 N 235 ±86 N -0.59 [-1.04, -0.14] 

Wrist angle     

Bisset [25] LE 
Patients (n =198; M 128, F 70), 

Controls (n = 40; M 24, F 16) 

R) = 183 

L) = 15 

D) = 134 

ND) = 64 
RT & SoM 

SRT 210 ±32 sec 177 ±18 sec 1.09 
[0.74, 1.45] 

1CRT 259 ±43 sec 225 ±24 sec 0.84 
[0.49, 1.19] 

2CRT 344 ±40 sec 307 ±32 sec 0.95 [0.60, 1.30] 

SoM1 86.5 ±21.8 cm/s 105 ±21 cm/s 0.85 [0.50, 1.20] 

SoM2 95.6 ±26.2 cm/s 110 ±26 cm/s 0.55 [0.21, 0.89] 

Brox [24] RCT 
Patients (n =10; M 7, F 3), 

Controls (n = 9; M 4, F 5) 

R) = NR 

L) = NR 

D) = NR 

ND) = NR 
Strength Sh adb 223 ±88.5 N 189 ±63 N -0.42 [-1.33, 0.49] 

Chourasia [27] LE 
Patients (n =13; M ?, F ?), 

Controls (n = 13; M 5, F 8) 

R) = NR 

L) = NR 

D) = 11 

ND) = 2 

GS, RFD, & 

EMD 

GS 383 ±83 N 418 ±125 N 0.32 [-0.46, 1.09] 

Peak RFD 228 ±122 lb/sec 233 ±74 lb/sec 0.05 [-0.72, 0.82] 



 

EMD 0.064 ±0.024 sec 0.039 ±0.014 sec 1.23 [0.38, 2.08] 

Coombes [32] LE 
Patients (n =150; M 94, F 56), 

Controls (n = 54; M 34, F 20) 

R) = 131 

L) = 19 

D) = 109 

ND) = 2 
Strength 

Elbow flx 246.7 ±40.4 N 245.7 ±40.4 N -0.02 [-0.34, 0.29] 

Elbow ext 185.9 ±31.8 N 185.9 ±32.3 N 0.00 [-0.31, 0.31] 

Coombes [29] LE 
Patients (n =164; M 101, F 63), 

Controls (n = 62; M 34, F 28) 

R) = NR 

L) = NR 

D) = NR 

ND) = NR 

GS, PPT, HPT, &  

CPT 

GS 354.2 ±131.5 N 471.1 ±133.1 N 0.88 [0.58, 1.19] 

PPT elbow 367.5 ±130.6 kPa 499.5 ±135.4 kPa 1.00 [0.69, 1.30] 

PPT neck 287.6 ±130.6 kPa 396.2 ±133.1 kPa 0.82 [0.52, 1.13] 

PPT tibia 407.4 ±133.2 kPa 517.6 ±130.7 kPa 0.83 [0.53, 1.13] 

HPT 43.2 ±2.82 °C 44.3 ±2.5 °C 0.40 [0.11, 0.70] 

CPT 10.2 ±5.1 °C 7.1 ±4.6 °C 0.62 [0.32, 0.92] 

Crossley [18] PT 
Patients (n =14; M 10, F 4), 

Controls (n = 31; M 20, F 11) 

R) = 12 

L) = 2 

D) = NR 

ND) = NR 

RoM, End, & 

Anthro 

Active Leg Ext 24.3 ±10.6 ° 24.6 ±12.9 ° -0.02 [-0.66, 0.61] 

Ankle Dorsi 48.4 ±6.6 ° 48.1 ±5.7 ° -0.05 [-0.68, 0.58] 

Calf end 27 ±9.7 25 ±12 -0.17 [-0.81, 0.46] 

Arch height 42.0 ±7.4 mm 50.4  ±5.9 mm 1.29 [0.60, 1.98] 

Dessurault [26] LE 
Patients (n =14; M 9, F 5), 

Controls (n = 16; M 10, F 6) 

R) = 13 

L) = 1 

D) = 10 

ND) = 4 

Corticomotor 

excitibility 
Data reported graphically  

Dessurault [33] LE 
Patients (n =14; M 9, F 5), 

Controls (n = 16; M 10, F 6) 

R) = 13 

L) = 1 

D) = 10 

ND) = 4 
Proprioception Webber’s fractions 4.9 ±3.2 % 5.4 ±2.1 % -0.18 [-0.90, 0.54] 

du Toit[20]  
Patients (n  = 20; M 16, F 4) 

Controls (n = 19; M 9, F 10) 

R) 19 

L) 1 

D) = 6 

ND) = 14 
US measures Thickness 4.97 ±0.92 mm 4.47 ±0.56 mm 0.64 [-0.01, 1.28] 

Fernandez-Carnero [21] LE 
Patients (n =25; M 10, F 15), 

Controls (n = 20; M 9, F 11) 

R) = NR 

L) = NR 

D) = NR 

ND) =NR 
Muscle TrP Latent TrP 2.2 ±1.02 0.4 ±0.80 1.90 [1.19, 2.62] 

Fernandez-Carnero [55] LE 
Patients (n =12; M 6, F 6), 

Controls (n = 16; M 9, F 7) 

R) = 8 

L) = 4 

D) = 12 

ND) = 0 
PPT, HPT, & CPT 

PPT elbow 527.5 ±178 kPa 813.1 ±350.6 kPa 0.95 [0.16, 1.75] 

PPT wrist 704.8 ±267.3 kPa 919.1 ±348.2 kPa 0.66 [-0.11, 1.43] 

HPT elbow 43.9±3.6 °C 43.9 ±3.1 °C 0.00 [-0.75, 0.75] 

HPT wrist 43.4 ±3.3 °C 43.3 ±3.2 °C -0.03 [-0.78, 0.72] 



 

CPT elbow 11.1 ±7.4 °C 9 ±4.7 °C 0. 34 [-0.41, 1.09] 

CPT wrist 12.0 ±7.3 °C 10.8 ±6 °C 0.18 [-0.57, 0.93] 

Fernandez-Carnero [56] LE 
Patients (n =26; M 10, F 16), 

Controls (n = 20; M 7, F 13) 

R) = 20 

L) = 6 

D) = 26 

ND) = 0 
PPT 

PPT elbow 469.4 ±262.0 kPa 812.2 ±262.1 kPa 1.29 [0.64, 1.93] 

PPT neck 275.7 ±191.6 kPa 593.5 ±191.6 kPa 1.63 [0.95, 2.31] 

PPT tibia 461.0±385.3 kPa 760.4 ±396.8kPa 0.75 [0.15, 1.36] 

PPT Median 288.8 ±140.6 kPa 469.7 ±140.7kPa 1.26 [0.62, 1.91] 

PPT Radial 237.7 ±136.5 kPa 428.3 ±136.3 kPa 1.37 [0.72, 2.03] 

PPT Ulnar 349.6 ±170.0 kPa 568.2 ±170.0 kPa 1.26 [0.62, 1.91] 

Fernandez-de-las-Penas 

[57] 
LE 

Patients (n =16; M 0, F 16), 

Controls (n = 17; M 0, F 17) 

R) = 16 

L) = 0 

D) = 16 

ND) = 0 
PPT 

PPT neck 230.8 ±50.1 kPa 421.6 ±52.4 kPa 3.63 [2.47, 4.78] 

PPT Median 253.0 ±54.7 kPa 409.9 ±52.3 kPa 2.86 [1.86, 3.87] 

PPT Radial 197.3 ±61.4 kPa 396.2 ±60.1 kPa 3.20 [2.13, 4.26] 

PPT Ulnar 294.2 ±72.8 kPa 434.8 ±45.6 kPa 2.27 [1.38, 3.17] 

Grigg [35] AT 
Patients (n =11; M 11, F 0), 

Controls (n = 9; M 9, F 0) 

R) = NR 

L) = NR 

D) =NR 

ND) = NR 
US measure 

Thickness 6.56 ±1.19 mm HC 4.96 ±1.26 mm 1.25 [0.27, 2.24] 

Echogenicity 82.9 ±12.93 U HC 119.3 ±13.5 U 2.64 [1.37, 3.91] 

Lundeberg [34] LE 
Patients (n =18; M 10, F 8), 

Controls (n = 16; M 9, F 7) 

R) = 18 

L) = 0 

D) = 18 

ND) = 0 
EPT   

Pienimäki [28] LE 
Patients (n =32; M 11, F 21), 

Controls (n = 32; M 11, F 21) 

R) = NR 

L) = NR 

D) = 25 

ND) = 7 
RT & SoM 

SRT 226 ±46 sec 179 ±18 sec 1.33 [0.78, 1.87] 

1CRT 291 ±70 sec 226 ±42 sec 1.11 [0.58, 1.64] 

2CRT 314 ±43 sec 282 ±47 sec 0.70 [0.20, 1.21] 

SoM1 92 ±47 cm/s 123 ±37 cm/s 0.72 [0.22, 1.23] 

SoM2 88 ±31 cm/s 126 ±49 cm/s 0.92 [0.40, 1.43] 

Ruiz-Ruiz [58] LE 
Patients (n =16; M 6, F 10), 

Controls (n = 16; M 6, F 10) 

R) = 16 

L) = 0 

D) = 16 

ND) = 0 
PPT, HPT, & CPT 

Ave PPT 217.7 ±170.6 kPa 334.6 ±127.5 kPa 0.76 [0.04, 1.48] 

Ave CPT 11.8 ±8.9 °C 7.4 ±5.2 °C 0.59 [-0.12, 1.30] 

Ave HPT 44.4 ±4.4 °C 47.1 ±2.7 °C 0.72 [0.00, 1.44] 



 

Note: Data reported as mean ± standard deviation; SMD = standardised mean difference; 95% CI = 95% confidence interval; a positive SMD represents a deficit in the 

unilateral tendinopathy group; LE = lateral epicondylalgia; RCT = rotator cuff tendinopathy; PT = patella tendinopathy; AT = Achilles tendinopathy; M = male; F = female; 

R) = right; L) = left; D) = dominant; ND) = non-dominant; NR = not reported; SoM = speed of movement; RT = reaction time; GS = grip strength; PPT = pressure pain 

thresholds, HPT = heat pain thresholds; CPT = cold pain thresholds; EPT = electrical pain thresholds; RFD = rate of force development; EMD = electromechanical delay; 

RoM = range of motion; Anthro = anthropometric measures; End = endurance; TrP = trigger points; US = ultrasound; Ave = average;  

Slater [30] LE 
Patients (n =20; M 10, F 10), 

Controls (n = 20; M 10, F 10) 

R) = 17 

L) = 3 

R) = 17 

L) = 0 

GS, Strength, & 

PPT 

PPT elbow 357 ±201.2 kPa 464 ±214.7 kPa 0.50 [-0.17, 1.17] 

PPT ECRB 239 ±134.2 kPa 306 ±205.7 kPa 0.37 [-0.29, 1.03] 

PPT RH 291 ±174.4 kPa 332 ±129.7 kPa 0.27 [-0.40, 0.93] 

Wrist ext 87 ±40.2 N 114 ±31.3 N 0.74 [0.06, 1.43] 

GS 303 ±102.9 N 311 ±98.4 N 0.08 [-0.58, 0.74] 



 

 


