8,434 research outputs found

    Effects of a High-Protein Corn Product on Nutrient Digestibility and Production Responses in Mid-Lactation Dairy Cows

    Get PDF
    An experiment was conducted to assess the effects of a high-protein corn product (56% crude protein; CP) relative to other sources of protein on the lactation performance of dairy cows. Twenty-four Holstein cows (1,367 ± 105 lb of body weight, 111 ± 34 days in milk, 2.28 ± 0.46 lactations; mean ± standard deviation) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design balanced for carryover effects. Cows were individually fed one of four diets with a different protein concentrate source during each 28-day period, including: soybean meal (SBM), high-protein corn product (HPCP), soybean meal with rumen-bypass soy protein (SBMBP), and canola meal with rumen-bypass soy protein (CANBP). Diets were formulated for equal concentrations of CP and balanced to meet lysine and methionine requirements. The SBM diet was formulated to provide 5.7% rumen-undegradable protein (RUP), while SBMBP and CANBP diets were formulated for 6.8% RUP to match HPCP. The CANBP diet increased dry matter intake compared with SBM and HPCP. Treatment affected milk yield, as SBMBP and CANBP increased yield compared with SBM, but HPCP decreased milk yield compared to all treatments. HPCP reduced CP intake as a percent of total intake and increased the CP content of feed refusals, indicative of selection against HPCP. HPCP decreased apparent total tract CP digestibility, leading to less urine nitrogen excretion and greater fecal nitrogen output. SBMBP and CANBP performed equally in nearly every variable measured, except SBMBP increased milk urea nitrogen concentration. In conclusion, the HPCP diet reduced milk yield, milk component yields, urine nitrogen excretion, and increased fecal nitrogen excretion due to lesser total tract CP digestibility

    Rapid production of Neurospora hyphae

    Get PDF
    Rapid production of Neurospora hypha

    NERVA irradiation program. GTR 23, volume 1: Combined effects of reactor radiation and cryogenic temperature on NERVA structural materials

    Get PDF
    Specimens fabricated from structural materials that were candidates for certain NERVA applications were irradiated in liquid nitrogen (LN2), liquid hydrogen (LH2), water, and air. The specimens irradiated in LN2 were stored in LN2 and finally tested in LN2, or at some higher temperature in a few instances. The specimens irradiated in LH2 underwent an unplanned warmup while in storage so this portion of the test was lost; some specimens were tested in LN2 but none were tested in LH2. The Ground Test Reactor was the radiation source. The test specimens consisted mainly of tensile and fracture toughness specimens of several different materials, but other types of specimens such as tear, flexure, springs, and lubricant were also irradiated. Materials tested include Hastelloy X, Al, Ni steel, steel, Be, ZrC, Ti-6Al-4V, CuB, and Ti-5Al-2.5Sn

    High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).

    Get PDF
    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature

    The President\u27s Powers as Commander-in-Chief Versus Congress\u27 War Power and Appropriations Power

    Full text link
    This joint work explores a variety of viewpoints all centered around the War Powers Resolution and its application to the situation in the Persian Gulf

    Frequency-Dependent Attenuation Analysis of Ground-Penetrating Radar Data

    Get PDF
    In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent Q* parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited Q* function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing Q* from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order Q* approximation and Q* computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and 200 MHz, a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection make it difficult or impossible to measure Q* from reflection data without a priori understanding of the materials. Despite these complications, frequency-dependent attenuation analysis of reflection data can provide valuable subsurface information. At two field sites, I find well-defined frequency-dependent attenuation anomalies associated with nonaqueous-phase liquid contaminants
    • …
    corecore