37 research outputs found

    Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics—An Important Nutri-Cereal of Future

    Get PDF
    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologues from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet

    Green Synthesis of Silver Nanoparticles using Litsea glutinosa L. Leaves and Stem Extracts and their Antibacterial Efficacy

    Get PDF
    The present study explores the green approach for the preparation of silver nanoparticles (AgNPs) through the reduction of silver nitrate by the cell-free stem and leaf aqueous extracts of Litsea glutinosa (L.glutinosa) and its potential antibacterial activity. The analytical instruments include scanning electron microscopy, Fourier transforms infrared spectroscopy, UV-visible spectroscopy, and X-ray diffraction spectroscopy confirmed the synthesis of smaller, uniformly spherical AgNPs (10-40 nm). The average crystalline size of prepared AgNPs produced by L. glutinosa leaf extract was found to be 19 mm. From UV-visible spectral analysis, the maximum absorbance peak appeared at 444 nm for leaf extract AgNPs different from stem extract AgNPs (422 nm), which are found to be specific for AgNPs. The L.glutinosa stem extract-assisted AgNPs have shown significant antibacterial activity against Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) in comparison to Gentamycin. Hence, the AgNPs obtained by green synthesis can be therapeutically explored against bacterial infections

    Maternal mental health in primary care in five low- and middle-income countries: a situational analysis

    Full text link

    Neurodevelopmental disorders in children aged 2-9 years: Population-based burden estimates across five regions in India.

    Get PDF
    BACKGROUND: Neurodevelopmental disorders (NDDs) compromise the development and attainment of full social and economic potential at individual, family, community, and country levels. Paucity of data on NDDs slows down policy and programmatic action in most developing countries despite perceived high burden. METHODS AND FINDINGS: We assessed 3,964 children (with almost equal number of boys and girls distributed in 2-<6 and 6-9 year age categories) identified from five geographically diverse populations in India using cluster sampling technique (probability proportionate to population size). These were from the North-Central, i.e., Palwal (N = 998; all rural, 16.4% non-Hindu, 25.3% from scheduled caste/tribe [SC-ST] [these are considered underserved communities who are eligible for affirmative action]); North, i.e., Kangra (N = 997; 91.6% rural, 3.7% non-Hindu, 25.3% SC-ST); East, i.e., Dhenkanal (N = 981; 89.8% rural, 1.2% non-Hindu, 38.0% SC-ST); South, i.e., Hyderabad (N = 495; all urban, 25.7% non-Hindu, 27.3% SC-ST) and West, i.e., North Goa (N = 493; 68.0% rural, 11.4% non-Hindu, 18.5% SC-ST). All children were assessed for vision impairment (VI), epilepsy (Epi), neuromotor impairments including cerebral palsy (NMI-CP), hearing impairment (HI), speech and language disorders, autism spectrum disorders (ASDs), and intellectual disability (ID). Furthermore, 6-9-year-old children were also assessed for attention deficit hyperactivity disorder (ADHD) and learning disorders (LDs). We standardized sample characteristics as per Census of India 2011 to arrive at district level and all-sites-pooled estimates. Site-specific prevalence of any of seven NDDs in 2-<6 year olds ranged from 2.9% (95% CI 1.6-5.5) to 18.7% (95% CI 14.7-23.6), and for any of nine NDDs in the 6-9-year-old children, from 6.5% (95% CI 4.6-9.1) to 18.5% (95% CI 15.3-22.3). Two or more NDDs were present in 0.4% (95% CI 0.1-1.7) to 4.3% (95% CI 2.2-8.2) in the younger age category and 0.7% (95% CI 0.2-2.0) to 5.3% (95% CI 3.3-8.2) in the older age category. All-site-pooled estimates for NDDs were 9.2% (95% CI 7.5-11.2) and 13.6% (95% CI 11.3-16.2) in children of 2-<6 and 6-9 year age categories, respectively, without significant difference according to gender, rural/urban residence, or religion; almost one-fifth of these children had more than one NDD. The pooled estimates for prevalence increased by up to three percentage points when these were adjusted for national rates of stunting or low birth weight (LBW). HI, ID, speech and language disorders, Epi, and LDs were the common NDDs across sites. Upon risk modelling, noninstitutional delivery, history of perinatal asphyxia, neonatal illness, postnatal neurological/brain infections, stunting, LBW/prematurity, and older age category (6-9 year) were significantly associated with NDDs. The study sample was underrepresentative of stunting and LBW and had a 15.6% refusal. These factors could be contributing to underestimation of the true NDD burden in our population. CONCLUSIONS: The study identifies NDDs in children aged 2-9 years as a significant public health burden for India. HI was higher than and ASD prevalence comparable to the published global literature. Most risk factors of NDDs were modifiable and amenable to public health interventions

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Structural, electrical and electrochemical studies of copper substituted layered LiNi1/3Co1/3Mn1/3O2 cathode materials

    No full text
    The copper substituted in LiNi1/3Co1/3Mn1/3O2 cathode materials are synthesized by the solid state reaction method. Here, we are presenting the details of synthesized LiNi1/3Co(1/3-x)Mn1/3CuxO2 (0, 0.05, 0.1 and 0.15) as an alternative cathode material for lithium-ion batteries. The powder X-ray diffraction (XRD) is used for confirmation of phase formation. Morphology and topography of the materials are investigated through a scanning electron microscope (SEM). The chemical composition is identified by techniques of energy dispersive X-ray spectroscopy (EDS) that is integrated with SEM. The Fourier transform infrared spectroscopy (FT-IR) technique is used to characterize the stretching and bending vibrational modes of different functional groups exist in the materials. At low frequencies, the dispersion of real parts of dielectric constant is due to space charge polarization which is observed for all the temperatures. More over charge/discharge studies are carried out to study the performance of the synthesized cathode materials. Keywords: Layered structure, Lithium nickel manganese cobalt oxides, XRD, SEM, Impedance, Charge-discharg

    Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries

    No full text
    In this work we investigate Li4Ti5O12 (LTO) anode material synthesized by conventional solid state reaction method calcined at 850 °C for 16 h. Thermal analysis reveals the temperature dependence of the material properties. The phase composition, micro-morphology and elemental analysis of the compound are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS) respectively. The results of XRD pattern possessed cubic spinel structure with space group Fd-3m. The morphological features of the powder sample are in the range of 1.1 μm. The EDS spectra confirm the constituent elemental composition of the sample. Electrical conductivity measurement at different frequencies and temperatures had been carried out; and at room temperature it is found to be 5.96 × 10−7 S/cm. Besides, for the different frequencies applied, the activation energies were calculated and obtained to be in the range of 0.2–0.4 eV. Keywords: Anode, Spinel Li4Ti5O12, Solid-state reaction, XRD, Electrical propertie

    Structural, morphological and vibrational properties of Li4Ti5-xNbxO12 anode materials

    No full text
    The spinel structured chemical composition of Li4Ti5-xNbxO12 (0 ≤ x ≤ 0.1) anode materials are manufactured by solid state process. An organized exhibition of the outcomes of the structural, morphological and vibrational bonding nature of the negative electrode materials are investigated via the thermal studies, XRD, SEM with EDS and FT-IR. The detected peaks of diffraction are in absolute concurrence with the ordered Li4Ti5O12 (LTO) cubic structure exactly fitting to the Fd3m group of the spinel class. This result could indicate that the Nb element is totally inserted into the lattice of the base material. The grain sizes of niobium doped materials are large above the base material (LTO) and range around 1 μm in size. The FT-IR spectra are put to use to illustrate vibrational modes about the stretching and bending of various functional groups and also thereby confirm the spinel structure of the anode materials

    Dose escalation in image-guided, intensity-modulated radiotherapy of carcinoma prostate: Initial experience in India

    No full text
    Background : Increasing incidence and significant stage migration from distant metastases to a localized disease, due to screening application of PSA, is taking place in carcinoma prostate. Also, role of radiotherapy is increasing in carcinoma prostate due to rapid strides in technology. Aim: The present retrospective study, evaluates escalating the dose in the treatment of localized carcinoma prostate using integration of multiple advanced techniques. Settings and Design: The settings designed are: a) use of gold seed internal fiducial markers: b) clinical application of emerging Megavoltage Cone Beam Computed Tomography (MVCBCT) technology for Image Guided Radiotherapy (IGRT); c) Intensity Modulated Radiotherapy (IMRT); d) adopting biochemical method for follow-up. Methods and Material: Twelve consecutive, biopsy proven localized cancer of prostate patients, treated with dose escalation IMRT& IGRT protocol between August 2006 and January 2008, were analyzed. Gold seed markers in prostate were used for daily localization with MVCBCT or Electronic Portal Imaging (EPI). All patients underwent clinical and biochemical follow-up. Statistical Analysis& Results : Planned dose of 7740 cGy was delivered in 10 out of 12 patients (83%). While one patient had migration of maximum of 3 mm, two others had 1 mm migration of one seed during course of treatment. One patient (8%) developed Grade II proctitis at 12th month. During the mean follow-up duration of 12.2 months, 92% (11/12) had biochemical control within 3 months of treatment. Conclusions: IGRT technique using MVCBCT for implanted fiducial gold seed localization was feasible for IMRT dose escalation in carcinoma prostate with excellent results
    corecore