19 research outputs found

    The search for ZZ Ceti stars in the original Kepler mission

    Get PDF
    We report the discovery of 42 white dwarfs in the original Kepler mission field, including nine new confirmed pulsating hydrogen-atmosphere white dwarfs (ZZ Ceti stars). Guided by the Kepler-INT Survey (KIS), we selected white dwarf candidates on the basis of their U-g, g-r, and r-H_alpha photometric colours. We followed up these candidates with high-signal-to-noise optical spectroscopy from the 4.2-m William Herschel Telescope. Using ground-based, time-series photometry, we put our sample of new spectroscopically characterized white dwarfs in the context of the empirical ZZ Ceti instability strip. Prior to our search, only two pulsating white dwarfs had been observed by Kepler. Ultimately, four of our new ZZ Cetis were observed from space. These rich datasets are helping initiate a rapid advancement in the asteroseismic investigation of pulsating white dwarfs, which continues with the extended Kepler mission, K2.Comment: 9 pages, 6 figures, accepted for publication in MNRA

    The fastest stars in the Galaxy

    Full text link
    We report a spectroscopic search for hypervelocity white dwarfs (WDs) that are runaways from Type Ia supernovae (SNe Ia) and related thermonuclear explosions. Candidates are selected from Gaia data with high tangential velocities and blue colors. We find six new runaways, including four stars with radial velocities (RVs) >1000 km s−1>1000\,\rm km\,s^{-1} and total space velocities ≳1300 km s−1\gtrsim 1300\,\rm km\,s^{-1}. These are most likely the surviving donors from double-degenerate binaries in which the other WD exploded. The other two objects have lower minimum velocities, ≳600 km s−1\gtrsim 600\,\rm km\,s^{-1}, and may have formed through a different mechanism, such as pure deflagration of a WD in a Type Iax supernova. The four fastest stars are hotter and smaller than the previously known "D6^6 stars," with effective temperatures ranging from ∌\sim20,000 to ∌\sim130,000 K and radii of ∌0.02−0.10 R⊙\sim 0.02-0.10\,R_{\odot}. Three of these have carbon-dominated atmospheres, and one has a helium-dominated atmosphere. Two stars have RVs of −1694-1694 and −2285 km s−1-2285\rm \,km\,s^{-1} -- the fastest systemic stellar RVs ever measured. Their inferred birth velocities, ∌2200−2500 km s−1\sim 2200-2500\,\rm km\,s^{-1}, imply that both WDs in the progenitor binary had masses >1.0 M⊙>1.0\,M_{\odot}. The high observed velocities suggest that a dominant fraction of the observed hypervelocity WD population comes from double-degenerate binaries whose total mass significantly exceeds the Chandrasekhar limit. However, the two nearest and faintest D6^6 stars have the lowest velocities and masses, suggesting that observational selection effects favor rarer, higher-mass stars. A significant population of fainter low-mass runaways may still await discovery. We infer a birth rate of D6^6 stars that is consistent with the SN Ia rate. The birth rate is poorly constrained, however, because the luminosities and lifetimes of D6\rm D^6 stars are uncertain.Comment: 26 pages, 17 figures. Accepted to OJ

    Orbital decay in an accreting and eclipsing 13.7 minute orbital period binary with a luminous donor

    Full text link
    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post-common envelope carbon-oxygen (CO) white dwarf, and a warm donor (Teff, donor=16,400±1000 KT_{\rm eff,\,donor}= 16,400\pm1000\,\rm K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant which left behind a helium star or helium white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave-driven orbital inspiral with ∌35σ\sim 35\sigma significance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial-velocity semi-amplitude of 771±27 km s−1771\pm27\,\rm km\, s^{-1}, and high-speed photometry reveals that the system is eclipsing. We detect a {\it Chandra} X-ray counterpart with LX∌3×1031 erg s−1L_{X}\sim 3\times 10^{31}\,\rm erg\,s^{-1}. Depending on the mass-transfer rate, the system will likely evolve into either a stably mass-transferring helium CV, merge to become an R Crb star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24±624\pm6 after 4 years of observations. The system is the first \emph{LISA}-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.Comment: 13 pages, 7 figures, 2 tables, submitted to ApJ

    A rotating white dwarf shows different compositions on its opposite faces

    Get PDF
    White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterised by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink toward the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor ~2.5 below a temperature of about 30,000 K; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 K are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is likely caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs -- together with GD 323, a white dwarf that shows similar but much more subtle variations. This new class could help shed light on the physical mechanisms behind white dwarf spectral evolution.Comment: 45 pages, 11 figure

    The McDonald Observatory search for pulsating sdA stars: Asteroseismic support for multiple populations

    Get PDF
    Context. The nature of the recently identified “sdA” spectroscopic class of stars is not well understood. The thousands of known sdAs have H-dominated spectra, spectroscopic surface gravity values between main sequence stars and isolated white dwarfs, and effective temperatures below the lower limit for He-burning subdwarfs. Most are likely products of binary stellar evolution, whether extremely low-mass white dwarfs and their precursors or blue stragglers in the halo. Aims. Stellar eigenfrequencies revealed through time series photometry of pulsating stars sensitively probe stellar structural properties. The properties of pulsations exhibited by sdA stars would contribute substantially to our developing understanding of this class. Methods. We extend our photometric campaign to discover pulsating extremely low-mass white dwarfs from the McDonald Observatory to target sdA stars classified from SDSS spectra. We also obtain follow-up time series spectroscopy to search for binary signatures from four new pulsators. Results. Out of 23 sdA stars observed, we clearly detect stellar pulsations in 7. Dominant pulsation periods range from 4.6 min to 12.3 h, with most on timescales of approximately one hour. We argue specific classifications for some of the new variables, identifying both compact and likely main sequence dwarf pulsators, along with a candidate low-mass RR Lyrae star. Conclusions. With dominant pulsation periods spanning orders of magnitude, the pulsational evidence supports the emerging narrative that the sdA class consists of multiple stellar populations. Since multiple types of sdA exhibit stellar pulsations, follow-up asteroseismic analysis can be used to probe the precise evolutionary natures and stellar structures of these individual subpopulations

    Discovery of Two Polars from a Crossmatch of ZTF and the SRG/eFEDS X-ray Catalog

    Full text link
    Magnetic CVs are luminous Galactic X-ray sources but have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope aboard the Spektr-RG (SRG) mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Transient Facility (ZTF) and discovered two new magnetic cataclysmic variables (CVs). We obtained high-cadence optical photometry and phase-resolved spectroscopy for each magnetic CV candidate and found them both to be polars. Among the newly discovered magnetic CVs is ZTFJ0850+0443, an eclipsing polar with orbital period Porb=1.72P_\textrm{orb} = 1.72 hr, white dwarf mass MWD=0.81±0.08M⊙M_\textrm{WD} = 0.81 \pm 0.08 M_\odot and accretion rate M˙∌10−11M⊙\dot{M} \sim 10^{-11} M_\odot/yr. We suggest that ZTFJ0850+0443 is a low magnetic field strength polar, with BWDâ‰Č10B_\textrm{WD} \lesssim 10 MG. We also discovered a non-eclipsing polar, ZTFJ0926+0105, with orbital period Porb=1.48P_\textrm{orb} = 1.48 hr, magnetic field strength BWD≳26B_\textrm{WD} \gtrsim 26 MG, and accretion rate M˙∌10−12M⊙\dot{M} \sim 10^{-12} M_\odot/yr.Comment: Submitted to Ap

    Orbital Decay in an Accreting and Eclipsing 13.7 Minute Orbital Period Binary with a Luminous Donor

    Get PDF
    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (Teff,donor = 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∌51σ significance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart with LX ∌ 3 × 1031 erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution
    corecore