6,072 research outputs found

    Inelastic collisions of relativistic electrons with atomic targets assisted by a laser field

    Full text link
    We consider inelastic collisions between relativistic electrons and atomic targets assisted by a low-frequency laser field in the case when this field is still much weaker than the typical internal fields in the target. Concentrating on target transitions we show that they can be substantially affected by the presence of the laser field. This may occur either via strong modifications in the motion of the relativistic electrons caused by the electron-laser interaction or via the Compton effect when the incident electrons convert laser photon(s) into photons with frequencies equal to target transition frequencies.Comment: 4 pages, 2 figure

    Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear

    Full text link
    Of all current detection techniques with nanometer resolution, only X-ray microscopy allows imaging nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying response to mechanical stimuli, the challenge lies in applying them with precision comparable to spatial resolution. In the first shear experiments performed in an X-ray microscope, we accomplished this by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope (STXM). Thus shear-induced reorganization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia

    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules

    Full text link
    The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased, and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel's widely-used time-dependent density functional theory benchmark set [M. Schreiber et al. J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step, and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory

    A new mechanism for electron transfer in fast ion-atomic collisions

    Full text link
    We discuss a new mechanism for the electron capture in fast ion-atom collisions. Similarly like in the radiative capture, where the electron transfer occurs due to photon emission, within the mechanism under consideration the electron capture takes place due to the emission of an additional electron. This first order capture process leads to the so called transfer-ionization and has a number of interesting features, in particular, in the target frame it results in the electron emission mainly into the backward semi-sphere.Comment: 4 pages, two figure

    Imaging Molecules from Within: Ultra-fast, {\AA}ngstr\"om Scale Structure Determination of Molecules via Photoelectron Holography using Free Electron Lasers

    Full text link
    A new scheme based on (i) upcoming brilliant X-ray Free Electron Laser (FEL) sources, (ii) novel energy and angular dispersive, large-area electron imagers and (iii) the well-known photoelectron holography is elaborated that provides time-dependent three-dimensional structure determination of small to medium sized molecules with {\AA}ngstr\"om spatial and femtosecond time resolution. Inducing molecular dynamics, wave-packet motion, dissociation, passage through conical intersections or isomerization by a pump pulse this motion is visualized by the X-ray FEL probe pulse launching keV photoelectrons within few femtoseconds from specific and well-defined sites, deep core levels of individual atoms, inside the molecule. On their way out the photoelectrons are diffracted generating a hologram on the detector that encodes the molecular structure at the instant of photoionization, thus providing 'femtosecond snapshot images of the molecule from within'. Detailed calculations in various approximations of increasing sophistication are presented and three-dimensional retrieval of the spatial structure of the molecule with {\AA}ngstr\"om spatial resolution is demonstrated. Due to the large photo-absorption cross sections the method extends X-ray diffraction based, time-dependent structure investigations envisioned at FELs to new classes of samples that are not accessible by any other method. Among them are dilute samples in the gas phase such as aligned, oriented or conformer selected molecules, ultra-cold ensembles and/or molecular or cluster objects containing mainly light atoms that do not scatter X-rays efficiently.Comment: 18 pages, 11 figure
    • …
    corecore