80 research outputs found

    Special symplectic spaces

    Get PDF

    Motion of test bodies in theories with nonminimal coupling

    Full text link
    We derive the equations of motion of test bodies for a theory with nonminimal coupling by means of a multipole method. The propagation equations for pole-dipole particles are worked out for a gravity theory with a very general coupling between the curvature scalar and the matter fields. Our results allow for a systematic comparison with the equations of motion of general relativity and other gravity theories.Comment: 5 pages, RevTex forma

    The de Sitter Relativistic Top Theory

    Full text link
    We discuss the relativistic top theory from the point of view of the de Sitter (or anti de Sitter) group. Our treatment rests on Hanson-Regge's spherical relativistic top lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with the Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory.Comment: 25 pages, Latex,commnets and references adde

    Dynamics of test bodies with spin in de Sitter spacetime

    Full text link
    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma

    Spinning branes in Riemann-Cartan spacetime

    Full text link
    We use the conservation law of the stress-energy and spin tensors to study the motion of massive brane-like objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant world-line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential

    The Schroedinger operator as a generalized Laplacian

    Full text link
    The Schroedinger operators on the Newtonian space-time are defined in a way which make them independent on the class of inertial observers. In this picture the Schroedinger operators act not on functions on the space-time but on sections of certain one-dimensional complex vector bundle -- the Schroedinger line bundle. This line bundle has trivializations indexed by inertial observers and is associated with an U(1)-principal bundle with an analogous list of trivializations -- the Schroedinger principal bundle. For the Schroedinger principal bundle a natural differential calculus for `wave forms' is developed that leads to a natural generalization of the concept of Laplace-Beltrami operator associated with a pseudo-Riemannian metric. The free Schroedinger operator turns out to be the Laplace-Beltrami operator associated with a naturally distinguished invariant pseudo-Riemannian metric on the Schroedinger principal bundle. The presented framework is proven to be strictly related to the frame-independent formulation of analytical Newtonian mechanics and Hamilton-Jacobi equations, that makes a bridge between the classical and quantum theory.Comment: 19 pages, a remark, an example and references added - the version to appear in J. Phys. A: Math. and Theo

    Highly relativistic spinning particle starting near rph(−)r_{ph}^{(-)} in a Kerr field

    Full text link
    Using the Mathisson-Papapetrou-Dixon (MPD) equations, we investigate the trajectories of a spinning particle starting near rph(−)r_{ph}^{(-)} in a Kerr field and moving with the velocity close to the velocity of light (rph(−)r_{ph}^{(-)} is the Boyer-Lindquist radial coordinate of the counter-rotation circular photon orbits). First, as a partial case of these trajectories, we consider the equatorial circular orbit with r=rph(−)r=r_{ph}^{(-)}. This orbit is described by the solution that is common for the rigorous MPD equations and their linear spin approximation. Then different cases of the nonequatorial motions are computed and illustrated by the typical figures. All these orbits exhibit the effects of the significant gravitational repulsion that are caused by the spin-gravity interaction. Possible applications in astrophysics are discussed.Comment: 10 pages, 12 figure

    Classical String in Curved Backgrounds

    Get PDF
    The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects, such as a string. Without specifying the type of matter the string is made of, we obtain both the equations of motion and boundary conditions of the string. The world sheet equations turn out to be more general than the familiar minimal surface equations. In particular, they depend on the internal structure of the string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically relevant massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc

    Scattering of Spinning Test Particles by Plane Gravitational and Electromagnetic Waves

    Get PDF
    The Mathisson-Papapetrou-Dixon (MPD) equations for the motion of electrically neutral massive spinning particles are analysed, in the pole-dipole approximation, in an Einstein-Maxwell plane-wave background spacetime. By exploiting the high symmetry of such spacetimes these equations are reduced to a system of tractable ordinary differential equations. Classes of exact solutions are given, corresponding to particular initial conditions for the directions of the particle spin relative to the direction of the propagating background fields. For Einstein-Maxwell pulses a scattering cross section is defined that reduces in certain limits to those associated with the scattering of scalar and Dirac particles based on classical and quantum field theoretic techniques. The relative simplicity of the MPD approach and its use of macroscopic spin distributions suggests that it may have advantages in those astrophysical situations that involve strong classical gravitational and electromagnetic environments.Comment: Submitted to Classical and Quantum Gravity. 12 page

    On the motion of spinning test particles in plane gravitational waves

    Full text link
    The Mathisson-Papapetrou-Dixon equations for a massive spinning test particle in plane gravitational waves are analysed and explicit solutions constructed in terms of solutions of certain linear ordinary differential equations. For harmonic waves this system reduces to a single equation of Mathieu-Hill type. In this case spinning particles may exhibit parametric excitation by gravitational fields. For a spinning test particle scattered by a gravitational wave pulse, the final energy-momentum of the particle may be related to the width, height, polarisation of the wave and spin orientation of the particle.Comment: 11 page
    • …
    corecore