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INTRODUCTION 

Symplectic geometry has found numerous applications in dynamics and 
field theory, see for example Refs. [l], [9], [ll], [12], 1171, and [23]. The 
notion, in symplectic geometry, of a Lagrangian subspace (submanifold) 
of a symplectic space (manifold) was introduced by V. I. Arnold ES] and 
A. Weinstein [24]. It arises in the analysis of asymptotic behavior of soIutions 
of differential equations, cf. [19], [5], in the study of Fourier integral operators, 
cf. [13], [14] and in quantization theory, cf. [6], [73. In most cases the 
symplectic spaces appearing in appIications have the structure of dual 
pairs and the symplectic manifolds are isomorphic to cotangent bundles. 
The additional structure present in these geometries allows one to describe 
Lagrangian subspaces by generating functions. Functions generating canoni- 
cal transformations have been commonly used in dynamics, see for example 
Ref. [15]. Generating functions of a wider class of Lagrangian submanifolds 
have been introduced in [21]. Other examples of generating functions 
include action functionals in variational formulations and Hamiltonian 
principal functions, cf. 11151. Both are closely related to differential equations. 

A Lagrangian subspace of a symplectic space is a maximal isotropic 
subspace, however, the converse is not always true [24$ In this paper we 
study a special class of symplectic spaces, called special symplectic spaces, 
having the additional structure sufficient for the existence of generating 
functions of maximal isotropic subspaces. The choice of concepts and the 
degree of generality are suggested by expected applications to problems 
in partial differential equations, which are illustrated in a simple case of 

477 
Copyright Q 191.3 by .4caderdc Press, Inc. 
Xl rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82192281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


478 LAWRUK, SNIATYCKI AND TULCZYJEW 

the Dirichlet and the Neumann problems for a second order linear equation 
with a formally self-adjoint partial differential operator. The theory developed 
is, however, directed towards application to linear systems of any order, 
involving formally self-adjoint matrix partial differential operators, and a 
much richer class of boundary conditions. The approach to symplectic 
geometry presented here is algebraic, without any reference to topology 
in the underlying vector spaces. Taking topology into account one can 
replace some of the aIgebraic conditions by topological ones. We are not 
doing this, however, at the present stage. 

In Section 1, we review standard facts about dual pairs of vector spaces 
and establish the notation. In Section 2, we discuss elementary properties 
of symplectic spaces and their subspaces. Since we do not consider topology, 
our definition of a symplectic form generalizes the notion of a weak symplectic 
form on a Banach space [16]. 

In Section 3 we discuss the notion of a presymplectic space and its reduction 
(for a finite dimensional case see [23]). Section 4 contains the definition 
and properties of linear symplectic relations. Symplectic relations for 
cotangent bundles of finite dimensional manifolds were first introduced 
in [13]. These relations between symplectic manifolds, modelled on reflexive 
Banach spaces, were studied in [21]. Here we study linear symplectic relations, 
but in arbitrary vector spaces, hence the results of [21] are not directly 
applicable. In Sections 5 and 6 we introduce special symplectic and special 
presymplectic spaces and analyze some of their properties. It is shown 
that a symplectic space structure is isomorphic to that of the product of a 
dual pair of vector spaces. In Section 7 we discuss the properties of isotropic 
subspaces of special symplectic spaces, distinguishing a class of isotropic 
subspaces possessing generating forms. The notion of a generating form 
is then used in Section 8 to study the composition of symplectic relations. 
In Sections 9, 10, and 11 the theory developed in the preceding sections 
is illustrated on problems in partial differential equations. A linear second 
order formally self-adjoint differential operator A on a bounded domain 
Q CR* is considered. The space of Cm solutions of Af = 0 defines an 
isotropic subspace N of the space of Cauchy data on X?’ with symplectic 
form given by Green’s second formula. Green’s first formula is related 
to the generating form of N. The subspace N is maximal if A is elliptic; 
it is also maximal if A is the two-dimensional d’Alembert operator and 
Q is a square whose diagonals are characteristics. If the sides of this square 
are characteristics then the space of solutions of -4f = 0 is not maximal 
isotropic. This suggests a connection between a problem for the operator ~4 
being well posed, and the maximality of the isotropic subspace defined by 

1 For the sake of simplicity we use here the term “Cauchy data” even in the case 
when Z.2 has characteristic directions. 
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the space of solutions to ;Ii = 0. Th’ IS connection will also be studied 

separately. If 52 is a union of two adjacent domains, Q = int@r u J&), 
and the solutions of L4f = 0 give rise to max.imal isotropic subspaces I\;, 

ni, , and IVa in the spaces of Cauchy data on %I, a.Qr , and ZQ, respectively, 
then N, as a symplectic relation, is the composition of XI and 74,. Jn 
Section 12 we study the problem of the composition of symplecdc relations 
corresponding to solutions of Af = 0 in Q, where -Q is the union of an 
arbitrary number of domains. 

2. DUAL PAIRS CF VECTOR SPACES 

Throughout this paper we work in the framework of the category of 

vector spaces and linear maps. Let E be a vector space, E* its dual, and 
e and S any elements of E and E*, respectively. We denote by <e,f) the 
value of the linear functional f on the vector e. The bilinear form ( , j 
on E and E* is called the evaluation form. Given any bilinear form ,B on 
a pair of vector spaces E and F we identify it with the induced linear functionas 
on E OF, and we denote by (e of, p> the value of p on a pair of vectors 
(e,f), where eEE andfEF. 

A dual pair of vector spaces is a triplet (E, F, /3), where E and F are vector 
spaces and p is a bilinear form on .7X and F such that 

6) (e of, ,/3> = 0, for all f EF, implies e = 0, 

(ii) (e @f, /3> = 0, for all e E E, implies f = 0. 

Let (E, F, p) be a dual pair of vector spaces, and G a subspace of E. The 
fi-orthogonal complement of G, denoted by G’, is a subspace of F defined 
byf~Gifandonlyif<e@f,/3) =Of or each e E G. One similarly defines 
the /%orthogonal complement of a subspace of F. For any subspaces G and H 
of E (or F) the following statements are true: 

(i) (G’)’ 3 G, 

(ii) G 3 H imphes H’ 3 G’, 

(iii) (G + H)’ = G’ n H’, where G + H denotes the subspace spanned 
by G and H. 

3. SYMPLECTIC SPACES 

Let P be a vector space and w a bilinear form on P. The transpose J 
of w is a bilinear form on P defined for each p, , p, E P by (pr @ p, , oT) = 

(P, c3P, 1 01. For each p E P, p J w denotes the unique linear functional 
in P* such that, for each p’ E F, <p’, p 1 w) = (p @ p’? to>. The form w 
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is nondegenerate if p ] w = 0 implies p = 0, and it is antisymmetric if 
UJ= = --cr). A bilinear form on a vector space is called symplectic if it is 
antisymmetric and nondegenerate. The definition of a symplectic form on 
a Banach space, due to A. Weinstein [25], requires that some additional 
topological conditions should be fulfilled. An antisymmetric nondegenerate 
bilinear form on a Banach space is called by J. E. Marsden [16] a weak 
symplectic form. We use here the term symplectic form in the more general 
sense than in Weinstein’s definition for the sake of simplicity. 

A symplectic space is a pair (P, w), where P is a vector space and w is a 
symplectic form on P. If (P, w) is a symplectic space, then (P, P, w) is a 
dual pair of vector spaces. An example of a symplectic space is furnished 
by a dual pair of vector spaces (E, F, /3) as follows. 

Let w be a bilinear form on E @F defined by 

for all e, , es E E and fi , f2 E F. Clearly, w is antisymmetric and nondegenerate, 
hence (P OF, W) is a symplectic space. 

Let (P, W) be a symplectic space, M a subspace of P, and M’ the w- 
orthogonal complement of M. If n/r C M’ then M is called an isotropic 
subspace of (P, UJ). If M’ CM then M is called a first class subspace of 
(P, u), and if M’ n M = 0, M is called a second class subspace of (P, w); 
this terminology is an adaptation of that used by P. A. M. Dirac [lo]. A 
maximal isotropic subspace M of (P, ) w is characterized by the condition 
nf = M’. For a reflexive Banach space P it has been shown by J. E. Marsden 
and A. Weinstein that (M’)’ = M if w is weak symplectic and M is closed 
[lx], however in general it does not hold. A Lagrangian subspace of (P, w) 
is an isotropic subspace possessing an isotropic complement [23]. Every 
Lagrangian subspace of a symplectic space is maximal isotropic. A necessary 
and sufficient condition for a maximal isotropic subspace to admit an 
isotropic complement is given in the following proposition. 

PROPOSITION 3.1. A maximal isotropic subspace N of a symplectic space 
(P, w) is Lagrangian if and only if there exists a subspace M of P such that 
M+N=PandM’+N=P. 

Proof. If N is a Lagrangian subspace of (P, w) then, for some isotropic 
subspace M, M + N = P. But MC M’, hence M’ + N = P. 

Conversely, let N be a maximal isotropic subspace of (P, w) and ill a 
subspace of P such that M + N = M’ + N = P. This implies N n M = 
N n M’ = 0. Hence every vector in P can be uniquely represented as a 
sum of vectors from M and N, and it can also be uniquely decomposed 
into a sum of vectors in M’ and N. Let L be the subspace of P defined as 
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follows, a vector p = m + n = m’ + n’, where na E M, m’ E M’, n, n’ E iV, 
belongs to L if and only if n + n’ = 0. Clearly, P = N + L. Let p, = 
m, f n, = m,’ - n, and pa = ma + n2 = m2’ - n2 , where m, , nzp E M, 
m,‘, m,’ f M’, and n, , n, E N, be any two vectors in L. Then, 

<PI OPZ > w> = &((ml + ml’) @ (m,, + m2’j, w> 

= a((m, - m,‘) @ (m2 - mi), w) 

= (nl 0 n, , co> = 0. 

Hence L is an isotropic subspace of (P, w). Therefore N is a Lagrangian 
subspacc of (P, w). Q.E.D. 

4. PRFWMPLECTIC SPACES 

A presymplectic space is a pair (P, W) where P is a vector space and u 
is an antisymmetric bilinear form on P. A presymplectic space (P, w> is 
symplectic if w is nondegenerate. 

Let (P, Q) be a presymplectic space and L = {p E P j p 1 CLI = 01. We 
denote by PT the quotient space P/L, the canonical projection by p: P -+ F’, 
and the bilinear form on Pr defined by 

<P(Pd 0 Ph), 4 = ($1 0 Pz ) w> forallp,,p,EP 

by w+. Clearly, mr is antisymmetric and nondegenerate. The symplectic 
space (PT, w’) is called the reduced space of a presymplectic space (P, w). 

Let (P, W) be a presymplectic space and I! a subspace of P. We denote 
by wN the restriction of w to N. An isotropic subspace of a presymplectic 
space (P, W) is a subspace N of P such that wN = 0. This definition is an 
extension of the definition of an isotropic subspace of a symplectic space 
to the case of a presymplectic space. 

5. SYMPLECTIC R~xLATIONS 

Let (PI, wI) and (P2 , UJJ be symplectic spaces. Let PI >< P2 denote 
the product of the vector spaces PI and P2 ; it is isomorphic to the direct 
sum PI 0 P2 . The bilinear form wr @ (-we) on PI x P2 is antisymmetric 
and nondegenerate, hence (PI x P, , w1 @ (-~a)) is a symplectic space. 
A linear symplectic relation from (PI , wr) to (P, , WJ is an isotropic subspace 
of (PI x P2 , w1 @ (-w2)>. Following the notation of point set theory, 
we use the symbol “0” to denote the composition of relations and the symbol 
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“-I” to denote the inverse. Clearly, a composition of linear symplectic 
relations is a linear symplectic relation, and the inverse of a linear symplectic 
relation is a linear symplectic relation. Symplectic relations were first 
introduced by Hormander [13]. 

EXAMPLE 5.1. Let 01 be a symplectic isomorphism from (PI , WJ to 
(Pa , We), that is cx: PI + P3 is a vector space isomorphism such that, for 
each p, p’ E PI , (a(p) @ I, wa) = (p @p’, q). Then the graph of 01 
is an isotropic subspace of (PI x P2, w1 0 (--~a)). Hence the graph of a 
symplectic isomorphism is a symplectic relation. 

EXAMPLE 5.2. Let (P, W) be a symplectic space, M a subspace of P, 
wILt the restriction of w to M, (PT, w’) the reduced space of a presymplectic 
space (M, wM), and p: M -+ P’ the canonical projection. We denote by N 
the graph of p imbedded in P x PT. It is a linear symplectic relation from 
(P, W) to (P’, wr) called th e reduction of a subspace M in (P, w). The inverse 
relation N-l = {(p’, p) E P’ X P ( (p, p’) E N) is a linear symplectic relation 
from (P’, J) to (P, w) called inverse reduction. The composition N-l 0 N 
is the graph of the identity map in P r. The composition N 0 N-1 is a linear 
symplectic relation from (P, w) to itself such that (p, p’) E N-l 0 N if and 
only if p, p’ E M and p(p) = p(p’). 

LEMMA 5.3. A linear symplectic relation N from (PI , wl) to (Pz , wJ 
is the graph of a symplectic isomorphism [f and only if pr,(N) 1 PI and 

pr,(N) = P?, where pr, and pr, are the JiYSt and second projections from 

Pl x Pa 9 respectively. 

Proof. Let N be a linear symplectic relation from (PI , WJ to (P2 , WJ 
such that pr,(N) = PI and pr,(N) = Pz . Suppose (pI’, pa’) and (pr’, pi) 
are in N, then (0, pl - pa’) EN. Since pr,(N) = P2 , for each p, E P2 , 
there exists p, E PI such that (p, , ps) E N, and 

0 = ((PI , P2) 0 (0, Pi - P239 Wl CII (-4) = -(P, 0 (P5 - P2’h 4 

Hence, (p’; - pa’) ] wa = 0 which implies that pi = pa’. Therefore N is 
the graph of a linear map from PI to Pz . Similarly, N-l is the graph of a 
linear map from Pz to PI . Since N is a symplectic relation it follows im- 
mediately that it is a graph of a symplectic isomorphism. 

Conversely, if N is the graph of a symplectic isomorphism, then it is a 
linear symplectic relation, pr,(N) = PI , and pr,(N) = Pz . Q.E.D. 

PROPOSITION 5.4. Every linear symplectic relation is a composition of 
reduction, a symplectic isomorphism, and an inverse reduction. 
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Proof. Let N be a linear symplectic relation from (P1 , wr) to (Ps J wz>. 
We denote by K the projection of N to Pr , K = prl(N), L~J~ the restriction 
of tir to K, (Pry, wlr) the reduced space of a presymplcctic space (K, C&J 
and by Nr the symplectic relation from (P, , wi) to (Pr’, wlr) corresponding 
to the reduction of K in (Pr , wr). Similarly, we denote by L the projection 
of N to P2 , wL the restriction of ws to L, (Pir, ~~~~ the reduced space of 
a presymplectic space (L, wJ, and by N2 the reduction of L in (9 , wa). 
Let M be the subspace of Pir x Ptr defined by (pi’, pi) cz M if and only 
if there exists (p, , ps) E N such that pr(p,) = pi’ and ,&I~) = p,’ where 
pl: iY + PIT and pz: L -+ PzV are the canonical projections. It is easy to 
verify using Lemma 5.3 that M is the graph of a symplectic isomorphism 
from (Pr’, wrr) to (P2’, w2’). Moreover, N = N;i o M o N, ) where N1 is 
a reduction, M is a graph of a symplectic isomorphism and N;’ is an inverse 
reduction. Q.E.D. 

6. SPECIAL SYMPLECTIC SPACES 

Let P be a vector space, and 13 a bilinear form on P. We denote by 
L, and R8 the left and the right characteristic spaces of 8, that is L, = 
(~~P~(p~p’,6)=Oforallp’~P),andR,=(p~PI(p’~p,#~=O 
for ail p’ f P]. If 6 is antisymmetric its left and right characteristic spaces 
are equal. 

A symplectic space (P, w) is called special if the following additional 
structure is given: a vector space Q, a vector space epimorphism r: P -+ Q, 
and a bilinear form B on P such that (i) 0 - BT = w, and (ii) Ker v = R, , 
Since the symplectic form w is determined by 8, we shall denote this special 
symplectic space by a quadruplet (P, Q, r, 0). 

A standard example of a special symplectic space is furnished by a dual 
pair of vector spaces (E, F, /3) as follows. Let pr,: E @F + E be the 
natural projection, and let 13 be a bilinear form on E 3 F defined by 
:t(e +f) @ (e’ + f’), e> = (e’ @f, pi. Then 6 - BT is a symplectic form 
on E@F, and(E@F,E,pr,,@) is a special symplectic space. 

Let (P, Q, n, 8) be a special symplectic space. We denote by T the map 
from P into Q* defined as follows, for each p E P, 77(p) is the unique 
linear functional on Q such that (r(p’), q(p)> = (p @p’, 0) for all 
P’EP. 

PROPOSITION 6.1. 1f (P, Q, rr, 0) is a special synpbctic space then P 
is a prbduct of Q and 7(P) with projections V: P---f Q and 71: P--t v(P), and 

(8, @It < 3 
vector spaces. ))’ where ’ 

, i derrotes the evaluation form, is a dual pair qf 



484 LAWRUK, SNIATYCKI AND TULCZYJEW 

Proof. Both maps r: P-+Q and 7: P+ y(P) are epimorphisms. Let 
p E P be such that +I) = 0 and q(p) = 0. Then, for each p’ E P, 

CP’ 63~~ 0 - 0 = tpf OP, 0 - CP op’,o 

= (4P), rl(P’)) - <4P’), v(P)) = 0. 

Since 8 - BT is nondegenerate, this implies that p = 0. Therefore P is a 
product of Q and 7(P) with projections r and 7, respectively. 

Further, if (Q, v(p)> = 0, for all 4 E Q, then 7(p) = 0. Let 4 EQ be 
such that (4, v(p)> = 0 f or all p E P. Since P is a product of Q and q(P) 
there exists p E P such that a(p) = 4 and v(p) = 0. Then, for each p’ E P, 
(p’ @p, I!? - tiT> = 0 which implies that p = 0. Hence 2 = n(p) = 0. 

Therefore, (Q, q(P), < , i) is a dual pair of vector spaces. Q.E.D. 

7. SPECIAL PRESYMPLECTIC SPACES 

A special presymplectic space is a quadruplet (P, Q, W, S), where P and Q 
are vector spaces, n: P + Q is a vector space epimorphism, and 0 is a bilinear 
form on P such that the characteristic space of 0 - BT is equal to the intersec- 
tion L, n R, of the left and the right characteristic spaces of 8, and 
Ker rr C Ker n + (L, n Ro). 

Given a special presymplectic space (P, Q, rr, 0) let Pr denote the quotient 
space of P by L, n R, , Q = Q/n-(Le n RJ, and p: P -+ Pr and u: Q -+ Q 
denote the canonical projections. There exists a unique ~-r: Pr -+ p such 
that the following diagram commutes: 

Let 19’ be a bilinear form on P* defined by (p(p,) @ p(p2), By) = (p, @p, , 19>. 
The antisymmetric part of 0’ is a symplectic form on PT. Further, Ker 7? = 
R,r . Hence (Pr, Q, mT, or) is a special symplectic space, it is called the 
reduced space of a special presymplectic space (P, Q, T, 0). 

If (P, Q, n, S) is a special presymplectic space we denote by 77 a map from 
P to Q* defined as follows, for eachp E P, 7(p) is the unique linear functional 
on Q such that -(z-(p’), v(p)> = (p @p’, @ for all p’ E P. A special pre- 
symplectic space (P, Q, V, 0) is special symplectic if P is a product of Q 
and q(P) with the projections w and 7, respectively. 
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8. ISOTROPIC SUBSPACES GENERATED BY FORMS 

Let (P, Q, zr, 6) be a special presymplectic space. A subspace N of P 
is called an isotropic subspace of (P, Q, n, 0) if N is an isotropic subspace 

of the presymplectic space (P, 8 - Or). 
Let K be a subspace of Q and y a symmetric bilinear form on K. The 

subspace N of P defined by p E N if and only if n(p) E K and, for each 

4 E K, (4, T(P)> = (4 0 n(p)> r? is an isotropic subspace of (P, Q, rr, 6), 
since p, p’ E N implies 

(p Op’, 0 - OT> = (p Op’, 6 - 0’ BP, @ 

= <4P’>, T(P)> - (4PL TfP’D 

= (4 P’) 0 4 PI7 ri - (4 P> 0 4 P’>, Y> 

IzYz 0. 

It is called the isotropic subspace generated by y, and y is called the generating 
form of N. The quadratic function a(4 @ 4, r), is called the generating 
function of N. 

Conversely, let N be an isotropic subspace of (P, Q, n, @) and let K = r(N). 
The restriction of 6 to N induces a bilinear form y on K as follows, for each 
p, p’ E N, (r(p) @ I, r> = <’ @p’, S}. Since B - 6r restricted to N is 
identically zero, the form y is symmetric. The form y generates an isotropic 
subspace of (P, Q, m, 6) which clearly contains the original isotropic subspace 
N. Therefore if N is maximal isotropic, it coincides with the isotropic 
subspace generated by y. The class of isotropic subspaces generated by 
forms is in general larger than the class of maximal isotropic subspaces. 
A sufficient condition for an isotropic subspace of a special symplectic 
space generated by a form to be maximal or Lagrangian is given in the 
following propositions. 

PROPOSITION 8.1. Let (P, Q, r, 0) be a special symplectic space, K a 
subspace of Q such that the orthogonal of the complement of K in the dual 
pair structure (Q, q(P), < , >) coincides with K, mid y a symmetric bilinear form 
on K. The isotropic subspace N generated by y is maximal if a(N) = K. 

Proof. Let p E P be such that n(p) E K and <p @ p’, 0 - PT> = 0 for 
all p’ E N. This implies that, for each p’ E N, 

(4P’h T(P)> - <4P’) 0 dP)> r> = (dP’l> dP)i - <4Ph dP’)> 

= (p @p’, s> - (p’ cjj)p, e> 
= 0, 
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and therefore p E N. If p E P is such that r(p) $ .K, then there e,xists p’ E P 
such that rr(p’) = 0, (4, q(p’)j = 0 for all ~EK, and (g(p), I) f 0. 
The first two of the conditions above imply that p’ EN, while the third 
one gives (p @p’, 19 - or) = -(z(p), q(p)> + 0. Hence there is no 
isotropic subspace containing N and p. Therefore N is a maximal isotropic 
subspace of (P, Q, m, 0). Q.E.D. 

PROPOSITION 8.2. Let (P, Q, r, 0) be a special symplectic space, K a 
subspace of Q and y a symmetric bilinear form on K The isotropic subspace N 
generated by y is Lagrangian if W(N) = K and there exists a subspace L of Q 
such that K + L = Q and K’ + L’ = q(P), where K’ and L’ are the orthogonal 
complements of K and L, respectively, in the dual pair (Q, y(P), ( , i). 

Proof. Let M be the isotropic subspace generated by the zero bilinear 
form on L, that is p E M if and only if z-( p) EL and v(p) EL.‘. Since n(N) = K, 
for each K E K, there exists p E N such that n(p) = k and q(p) agrees with 
k j y on K. The direct sum decomposition P = K + L permits an extension 
of k J y to a linear functiona k3 in q(P) in such a way that k ] y EL’. 

Let p be any vector in P. Since P is a product of Q and T(P), Q = K + L, 
and v(P) = K’ + L’, there exist k E K, 1 EL, r E K’ and s EL’ such that 
r(p) = k + 1 and 7(p) = r + s. Let p1 be the unique vector in P such 
that n(pJ = k, and q(pr) = r + k>. Clearly, p, E N. Further, let pa 
be the unique vector in P such that z(pa) = 1 and I = s - kT. 
Then pa E ill, and p = p, + p, . Therefore Ad is an isotropic complement of 
N in P. Hence N is a Lagrangian subspace of (P, B - @). Q.E.D. 

9. SYMPLECTIC RELATIONS GENERATED BY FORMS 

Let (Pl , Q, , T ,4> and (P2 , Q2 , m2 , 0,) be special symplectic spaces. 
Then (PI x Pz , Q1 x Qz , n1 x rz , 6, @ (-0,)) is also a special symplectic 
space. A symplectic relation from (PI , Q, , rrl , 0,) to (Pz , Qz , nz , 0,) is an 
isotropic subspace N of (P1 x Pz , Q1 x Qz , rr, x v~, B1 @ (-0,)). 

Let for each i = 1,2, 3, (Pi , Qi , vi , 19~) be a special symplectic space, 
IV,, a symplectic relation from (P1 , Q1 , n1 , B 1 ) to (Pz , Q, , n2 , 0,) generated 
by a symmetric bilinear form yre on a subspace K,, of QI x Qa , and Nsa 
a Lagrangian relation from (Pz , Q2 , rz , 0,) to (P3 , Qa , rrs , 0,) generated 
by a symmetric bilinear form yzu on a subspace Kz3 of Qs x Qa . We want 
to characterize the composite relation N,, 0 iVs3 in terms of the generating 
forms ~a and yz3 . The forms 1/x2 and yea can be extended to bilinear sym- 
metric forms 3/r? and y9a , on K = (Klg x Q,) n (Q1 x Kz3) such that 

<(cl1 > Q 9 43) 0 (Ql’, 4217 %‘h %2> = ((Pl 3 42) 0 kl’, P2’h YEA 
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and 

for all (ql ) q2 ,a) and (a’, s’, e’) in K. Further, let E, be the projection 
of KY2 to t&, and E3 be the projection of Kz3 to 8s. Then Er G& is the 
projection of K to 0,. We denote by E,‘, L?;, (E, n EJ the orthogonal 
complements of E, , E3 , El n E3 , respectively, in the dual pair 

622 > @2)? ( 3 >)* 

PROPOSITION 9.1. Let (El n EJ = E,’ + Ei, then (p, , p3) E I’,. x P, 
belongs to N,, 0 _hTng if und only if there exists q2 E ,OQ such that 
(T&)7 42 > -%(p,)) E K and, for au v-3 7 k, , k3) E K 

a> k, ,f%) 0 (T(Pl)> 42 3 %(P3)), ‘Yl2 -I- YP3) = <klS ?,(PlD - (k, * %(Pd? 

Proofs Let qii denote the map from Pi x Pi to (QI x 8j)” induced 
by the bilinear form 8, @ (-A,), that is, for each (pi , pr) E Pi x Pj and 

each (qi , cd f Qi x Qj , 

where pi and pj are any vectors in Pi and Pf , respectively, such that 
ni(pF:‘) = qi and 7rj(p9’) = qj . If (p, , pa) E N,, 0 iV2a , then there existsp, E Pz 
such that (PI ) p2> E % and (I+ , PJ E N23 . Clearly, (T( PJ, ~PJ, dud) E K 
and, for each (k, , k, , k3) c K., 

Conversely, let for some (p, , ps) B PI >: P3 there exists q2 ~8~ such that 

(4 pl), QZ ,d PA) E K and, for all (k, , k2 , k3) E K 

<PI 3 k, > 4 0 (T(P > q 1 9 2 > d~s)), 542 + 'Yad = (k, > -a( P& - 04 5 Q(P& 

Then there exists pa’ and pi in P2 such that ~~(~41) = z&p:) = q2, 
(p, , p2’) E AT,, and (pl , pa) E Naa . Hence, for each (k, , k, , k3) E K, 

<@I > 4 3 4 0 (4P,h qz 9 dP& YIZ> = <k, , TI(P,)> - <k, 3 Y,~P,‘)> 

and 

<(k, 2 kz 9 4) 0 MP,), qz > ~PJ)>% = (4 3 ?I~(P';)> - <is 3 Q(P&. 

Therefore, for all (k, , k, , k3) E K, (k, , &ps’ - pi)) = 0, and so 
q2(pa’ - pi) E (El n EJ’. Since (El n EJ’ = El’ + Ea’ there exist r’ and Y” 
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in Pz such that r&‘) = r&r”) = 0, I E E,‘, I E ES’, and p,’ -pi = 
r’ - yn. Let p, = p,’ - rf = pi - Y’. Then for each (k, , kB) E K12 , 

@I , hJ 0 rllz(& > ~2)) = (4 7 TI(PI)> - (4 7 Q(P& 
= (4 9 Q(PI)> - @, 7 rld~z’)> + & 3 T&‘)> 
= (4 9 PI)? - <k, 3 ve(~z’D 
= ((4 > 4) 0 (SPA T(P& Y& 

Hence (p, , ps) E NIB. Similarly, (pz , ps) E N2s. Therefore (p, , ps) E N,, 0 N2s. 
Q.E.D. 

Let NIB 0 Ng3 be generated by a symmetric bilinear form y13 on a sub- 
space K13 of Q1 x Qs . In order to determine K13 and y13 in terms of 

Yl2 and y2s let us consider the following dual pair of vector spaces 

where 

<QI x Q2 x Qs 9 rl#'J x rlzV’2) x rls(Ph 8>, 

(k71 3 42 2 PJ 0 MPd, r/2(P2), %(Pd, P> 
= (41 3 ?l(Pl)> - (!I2 9 7)2(P2)> + (43 Y "'7&D* 

We denote by (K12 x 0)’ and (0 x KJ the /?-orthogonal complements of 
Klp x 0 and 0 x K2s , respectively. 

PROPOSITION 9.2. Let N,, 0 iV23 be generated by a symmetric bilinear form 
y13 on a subspace K13 of Q1 x Q3, and let [(Klz x 0) n (0 x K&l’ = 
(K12 x 0)’ + (Kz3 x 0)‘, then 

(i) (ql , qJ belongs to K13 if and only ;f there exists q2 EQ~ such that 

(ql , qt , q3) E K and, for all k, E Q, such that (0, k, , 0) E K, 

((0, k, , 0) 0 (41 9 q2 , qJ, %z + 72,) = 0; 

(ii) for each (4 , h) and (ql , q3) in K13 , 

Ml > 4) 0 (ql, cd, YB? = ((4 7 k,, 4) 0 k1>42 3 qs), %n + 3/2sh 

where q2 is any vector in Q, such that (ql , qz , qJ satis$es the condition 
(i), and k, is any vector in Qz such that (k, , k, , $) E K. 

This proposition is essentially a linearized version of Proposition 4.4 
of Ref. [21], with the difference that more general spaces than reflexive 
Banach spaces are allowed here, and that is why the condition 

[(Kla x 0) n (0 x K&l = (k’,, x 0)’ + (0 x K13)’ 

is needed. Its proof is analogous to the proof of Proposition 4.4 in Ref. [21]. 
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10. SECOND ORDER SELF-ADJOINT DIFFERENTIAL EQUATIONS 

Let 52 be a bounded domain in LV with a piecewise Cm boundary 852; 
That is 

ai2 = (J &, 
l/=1 

where the Sis are, pairwise disjoint (n - 1)-dimensional Cc0 submanifolds 
of R,“, and S, denotes the closure of Sz in W. For each 1 = 1,2 ,..., k, we 
denote by q the unit normal to Sz pointing towards the exterior of Q, and, 
by dS, the induced surface element in Sr . Let us introduce the notation, 
E = P(Z2), F = Cm@), and 

H = )( Cm(S1). 
24 

The spaces F and F x H are dual with respect to a bilinear form /3 defined 
as follows, for each f E F and (g, (h,)) E F x H, 

Similarly, the spaces E and H are dual with respect to a bilinear form p’, 
defined by 

for each e E E and each (h,) E H. The dual pair structure (F, F x H, /3) 
gives rise to a special symplectic space (F x F x H, F, r, 8), where 
P: F x F x H -+ F is the projection onto the first factor and 

<CL g, (hz)) 0 (7, g’, (hz’)), 0 = <f’ 0 (g, (hz)>> P>. 

Similarly, the dual pair structure (E, H, /P) g’ ives rise to a special symplectic 
space (E x H, E, nF, P) where rr “: E x H---f E is the projection to the 
first factor and 

<(e, (hzN 0 (e’, (h,‘)), or> = <e’ 0 @,I, 10 

We denote by w the antisymmetric part of 0 an.d by OY the antisymmetric 
part of f?, i.e., 0 = 0 - B*, wr = fP - err. 

The subspace M = F x 0 x H of F x F x H is a first class subspace of 
the symplectic space (F x F x H, w) and (M, F, n,, , t3,), where n, is the 
restriction of w to M and e,, is the restriction of 8 to &I, is a special pre- 

505:17/z-16 
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symplectic space. The reduced space of (M, F, rM, 8,) is isomorphic to 
(E x H, E, rT, P). We denote by p: M + E x H the canonical projection 
associating to each (f, 0, (Al)) E M, p(f, 0, (1;r)) = (f 1 &!, (Q) E E x H. 

Let A be a linear self-adjoint differential operator on 8. For each f EF, 

where a, ag E F and aij = aj, . For any f, f' EF we have the following 
Green’s formulae 

and 

(1) 

where nli denotes the ith component of a unit normal n,, . Let N be the 
subspace of F x F x H defined by (f, g, (h,)) E N if and only if Af = g and 

j = h, , 

for each 1 = 1,2,..., k. From the Green’s formula (II) it follows that N 
is an isotropic subspace of (F x F x H, F, rr, 0). Further, 0 x F x H is 
also an isotropic subspace of (F x F x H, F, rr, 0) and N + 0 x F x H = 
F x F x H. Hence N is Lagrangian. Clearly, Z-(N) = F, and the Green’s 
formula (I) shows that N is generated by a symmetric-bilinear form y on F 
defined by the right hand side of (I), i.e., 

Let us consider now a differential equation Af = 0. This amounts to 
the study of the intersection of N with M == F x 0 x H. Clearly, N n &I is 
an isotropic subspace of the special presymplectic space (M, F, T,, 0,) and, 
-@If) = F = w(N), the form y also generates N n M in the special pre- 
symplectic structure (M, F, Q, , 8,). The study of Dirichlet problems for 
the differential equation Af = 0 correspondsto the transition to the reduced 
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space (E x H, E, S, 0~). The projection p(N) of N to E x H is an isotropic 
subspace of (E x H, E, QT*, P), and it consists of these (e, &)) E E x N 
for which there exists f EF such that Af = 0, f i 8’2 = e, and 

The question whether p(N) is generated by some bilinear form can be 
answered in special cases after a more thorough examination of the operator A. 

We discuss two special cases in the subsequent sections. 

11. ELLIPTIC BOUNDARY VALUE PROBLEMS 

In addition to the hypotheses of the preceding section let us assume 
that A is an elliptic operator. We denote by I;: the projection of p(N) to ES 
K = +(p(N)), that means K is the subspace of all admissible Cm Dirichlet 
data on 852 for the equation Af = 0. Let L be the subspace of H defined 
as foilows, (~5~) EL if and only if there exists f EF such that Af = 0, 
f\i%=Oand 

Since A is eflipticL is a finite Dimensions subspace of EK From Fredho~m’s 
theorems it follows also that e E K if and only if 

eh, dSs = 0 

for all &> EL, cf. Ref. [20]. Th ere ore f .K is the ~-orthogon~ complement 
of L. Since L is finite dimensionait, K’ = (L’)’ = L [S]. To show that p(N) 
is maximal isotropic let us consider (e, (A,)) E E x H such that 

<te, tm 0 v, th% a”> = 0 for all (e’, (h,‘)) E p(N). 

Then, restricting this condition to 0 x L; C p(N), we get 

0 = ((6 (h)) 0 (4 thbr)), 5r - @9 = <@ 05’)) 0 (6, V&H, @> 
= <e 0 th,‘), 8”) 

for all (h6f) EL. Hence e ELI = K, and there exists f EF such that Af = 0 
and f \ %? = e. Let (6,) E H be defined as follows, for each I = 1,2,..,, k, 

t@=h,-- f aif-.3!Lni a$ 1’ E = I, 2 ,...) k. 
i.j=l 
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Then, for each (e’, (1~‘)) E N, ((0, (AZ)) @ (e’, (h,‘)), ~3 = 0 and therefore 
(e’ @(t$), p’) = 0 f or all e’ E K. Hence (&) E K’ = L, and there exists 
~EF such that Af” = 0, f-1 82 = 0, and 

1, 1 = 1,2 ,..., k. 

Further, f +~EF and it satisfies the following conditions, A(f +f) = 0, 
(f+f>l aQ =e,md 

which implies that (e, (h,)) Ed. Therefore p(N) is a maximal isotropic 
subspace of (E x H, E, T?, 19~). Every maximal isotropic subspace of a 
special symplectic space is generated by a bilinear symmetric form. 

The generating form for p(N) is obtained from that for N n &I if one 
expresses the integral 

in terms of the boundary values of the functions f and f ‘. It is a generalization 
of the Hamilton principal function [15] to the case of a partial differential 
equation. The suitable spaces for elliptic differential operators are Sobolev 
spaces. The analysis given above extends easily to this case, yielding an 
additional result that p(N) is Lagrangian since every maximal isotropic 
subspace of a Hilbert space is Lagrangian (A. Weinstein [24]). 

12. THE WAVE EQUATION IN R2 

Suppose now that Q is the interior of the square in R2 with vertices (0, 0), 

(0, 11, (1, O>, and (1, 11, and let Af = Pf/fiax2 - Pf/fiay2. The boundary of 0 
consists of four segments of straight lines. Using the d’Alembert formula 
for the solution of the wave equation one can verify that p(N) is a maximal 
isotropic subspace of (E x H, E, T?“, P) with the projection K = d$(N)) 
uniquely characterized by the condition: e E K if and only if, for each 
x E [0, 11, e(z, 0) + e(1 - x, 1) - e(0, a) - e(l, 1 - X) = 0. 

The generating function &(e @ e, r’> of p(N) can be computed by 
.exlkessing the generating function of N n M, given in this case by 



SPECIAL SYMPLECTIC SPACES 493 

in terms of the restriction off to 9. This gives, for each e E K, 

= 4 
s 

’ (e(0, .a) e,(x, 0) - e(z, 0) e,(O, z) + e(z, 1) e,(l) z) - e(1, z) e&h 1)) & 
0 

where e3: and e,, denote the derivatives of e with respect to the coordinates 
x and y, respectively. 

It should be noted that if we took G to be the interior of a charac- 
teristic square, then p(N) would not be a maximal isotropic subspace of 
(E x H, E, nl’, W). 

Similar boundary value problems for the wave equation have been studied 
by R. A. Aleksandrian [2], [3], [4] and S. L. Sobolev [22]. 

13. LAGRANGIAN STRUCTURE OVER A GRAPH 

In previous sections we have associated to any region in Rn a special 
symplectic space and to a differential equation in this region an isotropic 
subspace. If we have two adjacent regions then the isotropic subspace 
corresponding to the differential equation in the union of these regions 
can be obtained by composition from the isotropic subspaces corresponding 
to each region separately. In many cases, however, one encounters more 
general types of relations than binary symplectic relations. We give here a 
general framework for this type of relations and illustrate it by a discussion 
of a differential equation on a simplicial complex in (w”. 

A graph is a pair (V, S) where V is a set and S is a subset of E’ x V 
such that (u, V) E S implies zc f YJ and (ZI, U) G S. If (V, S) is a graph and 
U is a subset of V we denote by BU the subset of S defined by BU = 
((u, v) E s / u E u, v $ u). 

A Lagrangian structure over a graph (V, S) consists of the following: 

(i) A family @ of subsets of V such that, for each U E ?#: BU is a 
finite nonempty set. 

(ii) A family of special symplectic spaces (PU , QU , vu, 6,) and their 
isotropic subspaces iVrI generated by symmetric forms ya on KU C Q, I 
indexed over @. 

(iii) A family of special symplectic spaces (PU.U , Q,, , r,, , 6,,), indexed 
over S. 

(iv) A family of vector space epimorphiims oUzlU: PU + P,l,O and 

TUZlV. . QU -+ QUV defined for each U E %! and each (u, v) E BU. 
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The following conditions are satisfied: 

(4 ptm = pm 9 Q,m = Qvu > ~ITuv = ~VtJ, , epdn + evu = 0. 
(b) The following diagram commutes 

(c) Pusp ==OifandonlyifcT,,,,(p) =Oforall(u,v)EB?7,Q)V.3q=0 
if and only if T~&Q) =: 0 for all (u, n) E BU. 

(d) For each p, p’ in Pu, 

(e) For each U E % and each finite family d C @ consisting of pairwise 
disjoint subsets of U covering U, the isotropic subspace NV is 
related to the isotropic subspaces LV~ , X E 3, as follows: p, E l\rU 
if and only if, for each X E %, there exists a p, E N, such that 

(4 cxld,( px) := uyvu(py), whenever (u, c) E BX, (a, u) E BY and 
x, Y G *x; 

@) oxUo(px) - aUrcV(pU), whenever (u, c) E BX n BU and X E 3. 

Given U E % and a finite family A?” C 4P consisting of pairwise disjoint 
subsets of U covering U, we denote by K the subspace of )(rEs Kx such 
that (qx) E K if and only if Txuc(qx) = Tygu(qy) whenever (u, n) E BX and 
(o, IL) E BY. Under the assumptions analogous to those in Proposition 9.2 
the subspace Ku of Q,,’ is uniquely characterized by the following condition, 
qrr E KU if and only if there exists (qx) E K such that rx,,(qx) = Tvsv(qu) 
whenever (u, n) E BX n BU and, for all (k,) E K such that ~r~~(k~) =: 0 
whenever (u, n) E BX n BU, 

xTx (kx 0 qx 3 YX) = 0. 

Further, the generating form ya of NV is given as follows. For each kU 
andq,inK,, 

<Ku 0 qu 3 YU) = ,c, <Ax 0 qx > YX), 

where (k,) and (qx) are any elements of K satisfying together with (A,) 
and (qL,), respectively, the conditions given above. 
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Consider a simplicial complex in Iw” such that [FB” is the space of the 
complex. Let V be the set of all n-simplices in the complex and let S be 
the subset of V i: V consisting of all pairs of different n-simplices in the 
complex having an (n - I)-simplex as a common face. Then (V, S) is a 
graph. Let 92 be the family of all finite, nonempty subsets of V. For each 
U E %, I3 C’ is finite and nonempty. Let, for each U E %, Ou be the interior 
of the union of the spaces of all n-simplices in U. Clearly, QU is open and 
relatively compact. Let for each (u, V) E BU, S,,,, be the interior of the 
(n - 1)-simplex which is the common face of u E U and v 6 U. Then 

Let, for each (u, V) E S, QUV = CqsTJ, P,, = C=(S,,) x CyQ, 

TUC. . puu + QUU be the projection onto the first factor. Further, let n,, be 
the unit normal to S,, directed towards the interior of the n-simplex zi, 
and let AS,, be the surface element in SU, induced by the volume in W” 
and the orientation of the normal noV . Then nclo = -q,, and dS,,. = -dS,,, . 
Let 8,, be the bilinear form on Puv defined for each (e, h), (e’, lz’) E P,,, by 

((e, h) @ (e’, h’), e,,) = 
j 
s,, e’h d.S,, . 

Clearly 8,, = -L ad (Puv , Q,, , 7rU. , e,.,) is a special symplectic space. 
For each U E @!, let Q, = CW(BQLr), H, = Xsu Cm(s,,), P, = $3, x H, , 
: P, -+ QU be the projection onto the first factor, and let r”ir be the 

ikear form on P, defined, for each (e, h,,) and (e’, h:,,) in PLr, by 

Then (Pu, QU I =u, ,G) is a special symplectic space. 
For each (u, V) E BU we denote by Taco,,: QI: + Q,, the restriction map, 

i.e. for each e EQ~ = Cffi(X?,), qrLIV(e) is the restriction of e to S,, C 2&, 
and by Oaks,: P, --f P,., the map defined by qTu,(ez h,,) = (TcrXcl?(e), A,,). 
Both maps are vector space epimorphisms and the conditions (a), (b), (c), 
and (d) are satisfied. 

Let A: P(rWn) + Cm(Rn) be a linear self-adjoint elliptic differential 
operator of second order, given by 
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For each U E @ we denote by NU the isotropic subspace of (Pv , $I, , ru, $ru) 
defined as follows: (e, A,,) E :VU if and only if there exists an f~ P(s,) 
such that Af = 0, f 1 29, = C and, for each (u, v) E BU, 

Then the family {NU}Lre,+ satisfies the condition (e). Hence this construction 
gives an example of a Lagrangian structure over a graph as defined above. 
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