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INTRODUCTION

Symplectic geometry has found numerous applications in dynamics and
field theory, see for example Refs. [1], [9], [11], [12], [17], and [23]. The
notion, in symplectic geometry, of a Lagrangian subspace (submanifold)
of a symplectic space (manifold) was introduced by V. I. Arnold [5] and
A. Weinstein [24]. It arises in the analysis of asymptotic behavior of solutions
of differential equations, cf. [19], [5], in the study of Fourier integral operators,
cf. [13], [14] and in quantization theory, cf. [6], [7]. In most cases the
symplectic spaces appearing in applications have the structure of dual
pairs and the symplectic manifolds are isomorphic to cotangent bundles.
The additional structure present in these geometries allows one to describe
Lagrangian subspaces by generating functions. Functions generating canoni-
cal transformations have been commonly used in dynamics, see for example
Ref. [15]. Generating functions of a wider class of Lagrangian submanifolds
have been introduced in [21]. Other examples of generating functions
include action functionals in variational formulations and Hamiltonian
principal functions, cf. [15]. Both are closely related to differential equations.

A Lagrangian subspace of a symplectic space is a maximal isotropic
subspace, however, the converse is not always true [24}. In this paper we
study a special class of symplectic spaces, called special symplectic spaces,
having the additional structure sufficient for the existence of generating
functions of mazimal isotropic subspaces. The choice of concepts and the
degree of generality are suggested by expected applications to problems
in partial differential equations, which are illustrated in a simple case of
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the Dirichlet and the Neumann problems for a second order linear equation
with a formally self-adjoint partial differential operator. The theory developed
is, however, directed towards application to linear systems of any order,
involving formally self-adjoint matrix partial differential operators, and a
much richer class of boundary conditions. The approach to symplectic
geometry presented here is algebraic, without any reference to topology
in the underlying vector spaces. Taking topology into account one can
replace some of the algebraic conditions by topological ones. We are not
doing this, however, at the present stage.

In Section 1, we review standard facts about dual pairs of vector spaces
and establish the notation. In Section 2, we discuss elementary properties
of symplectic spaces and their subspaces. Since we do not consider topology,
our definition of a symplectic form generalizes the notion of a weak symplectic
form on a Banach space [16].

In Section 3 we discuss the notion of a presymplectic space and its reduction
(for a finite dimensional case see [23]). Section 4 contains the definition
and properties of linear symplectic relations. Symplectic relations for
cotangent bundles of finite dimensional manifolds were first introduced
in [13]. These relations between symplectic manifolds, modelled on reflexive
Banach spaces, were studied in [21]. Here we study linear symplectic relations,
but in arbitrary vector spaces, hence the results of [21] are not directly
applicable. In Sections 5 and 6 we introduce special symplectic and special
presymplectic spaces and analyze some of their properties. It is shown
that a symplectic space structure is isomorphic to that of the product of a
dual pair of vector spaces. In Section 7 we discuss the properties of isotropic
subspaces of special symplectic spaces, distinguishing a class of isotropic
subspaces possessing generating forms. The notion of a generating form
is then used in Section 8 to study the composition of symplectic relations.
In Sections 9, 10, and 11 the theory developed in the preceding sections
is illustrated on problems in partial differential equations. A linear second
order formally self-adjoint differential operator 4 on a bounded domain
£2CR» is considered. The space of C® solutions of Af = 0 defines an
isotropic subspace IV of the space of Cauchy data on 9Q" with symplectic
form given by Green’s second formula. Green’s first formula is related
to the generating form of N. The subspace IV is maximal if 4 is elliptic;
it is also maximal if A4 is the two-dimensional d’Alembert operator and
£2 is a square whose diagonals are characteristics. If the sides of this square
are characteristics then the space of solutions of Af = 0 is not maximal
isotropic. This suggests a connection between a problem for the operator A4
being well posed, and the maximality of the isotropic subspace defined by

1 For the sake of simplicity we use here the term “Cauchy data” even in the case
when 882 has characteristic directions.
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the space of solutions to .4f = 0. This connection will also be studied
separately. If 2 is a union of two adjacent domains, 2 = int($2, U 2,),
and the solutions of Af = 0 give rise to maximal isotropic subspaces N,
N, , and N, in the spaces of Cauchy data on 882, ¢£2, , and 2£2, respectively,
then N, as a symplectic relation, is the composition of N, and N,. In
Section 12 we study the problem of the composition of symplectic relations
corresponding to solutions of Af = 0 in 2, where £ is the union of an
arbitrary number of domains.

2. DuaL Pairs ¢F VECTOR SPACES

Throughout this paper we work in the framework of the category of
vector spaces and linear maps. Let E be a vector space, E* its dual, and
e and f any elements of E and E*, respectively. We denote by {¢, f) the
value of the linear functional f on the vector e. The bilinear form { , >
on E and E* is called the evaluation form. Given any bilinear form B on
a pair of vector spaces E and F we identify it with the induced linear functional
on E @ F, and we denote by {e % f, B> the value of 8 on a pair of vectors
(e, f), where ec E and feF.

A dual pair of vector spaces is a triplet (E, F, f), where E and F are vector
spaces and 8 is a bilinear form on £ and ¥ such that

(i) <e®f,B> =0, for all fekF, implies e = 0,
(i) <e®f, B> =0, for all ec E, implies f = 0.

Let (E, F, B) be a dual pair of vector spaces, and G a subspace of E. The
B-orthogonal complement of G, denoted by G, is a subspace of F defined
by fe G’ if and only if (e ® f, B> = 0 for each ¢ € G. One similarly defines
the B-orthogonal complement of a subspace of F. For any subspaces G and H
of E (or F) the following statements are true:

M (GY2G,

(i) GO H implies H' O &,

(ii) (G + HY = G n H', where G -+ H denotes the subspace spanned

by G and H.

3. SymPLECTIC SPACES

Let P be a vector space and w a bilinear form on P. The transpose w”
of w is a bilinear form on P defined for each p, , p, e Pby {p; ® pp, 0’y =
{pa X Py, > For each pe P, p | w denotes the unique linear functional
in P* such that, for each p'e P, {(p",p |w> = <{p ® p’, w>. The form w



480 LAWRUK, SNIATYCKI AND TULCZYJEW

is nondegenerate if p |w = 0 implies p = 0, and it is antisymmetric if
@’ = —w. A bilinear form on a vector space is called symplectic if it is
antisymmetric and nondegenerate. The definition of a symplectic form on
a Banach space, due to A. Weinstein [25], requires that some additional
topological conditions should be fulfilled. An antisymmetric nondegenerate
bilinear form on a Banach space is called by ]J. E. Marsden [16] a weak
symplectic form. We use here the term symplectic form in the more general
sense than in Weinstein’s definition for the sake of simplicity.

A symplectic space is a pair (P, ), where P is a vector space and w is a
symplectic form on P. If (P, w) is a symplectic space, then (P, P, w) is a
dual pair of vector spaces. An example of a symplectic space is furnished
by a dual pair of vector spaces (E, F, ) as follows.

Let  be a bilinear form on E B F defined by

e+ )Rt fo) oy =K@, B — <1 @ fzr B

foralle, , ¢, € Eandf;, f, € F. Clearly, w is antisymmetric and nondegenerate,
hence (E @ F, w) is a symplectic space.

Let (P, w) be a symplectic space, M a subspace of P, and M’ the w-
orthogonal complement of M. If M C M’ then M is called an isotropic
subspace of (P, w). If M'C M then M is called a first class subspace of
(P, @), and if M'N M =0, M is called a second class subspace of (P, w);
this terminology is an adaptation of that used by P. A. M. Dirac [10]. A
maximal isotropic subspace M of (P, w) is characterized by the condition
M = M. For a reflexive Banach space P it has been shown by J. E. Marsden
and A, Weinstein that (M’)" == M if w is weak symplectic and M is closed
[18], however in general it does not hold. A Lagrangian subspace of (P, w)
is an isotropic subspace possessing an isotropic complement [23]. Every
Lagrangian subspace of a symplectic space is maximal isotropic. A necessary
and sufficient condition for a maximal isotropic subspace to admit an
isotropic complement is given in the following proposition.

PropositioN 3.1. A maximal isotropic subspace N of a symplectic space
(P, w) is Lagrangian if and only if there exists a subspace M of P such that
MA+N=Pand M'+ N = P.

Proof. If N is a Lagrangian subspace of (P, w) then, for some isotropic
subspace M, M - N = P. But M CM’, hence M’ + N = P.

Conversely, let N be a maximal isotropic subspace of (P, w) and A a
subspace of P such that M/ 4+~ N = M’ + N = P. This implies NN M =
NN M’ = 0. Hence every vector in P can be uniquely represented as a
sum of vectors from M and N, and it can also be uniquely decomposed
into a sum of vectors in M’ and N. Let L be the subspace of P defined as
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follows, a vector p = m +n =m' + o', where me M, m e M', n,n" e N,
belongs to L if and only if » +»n" = 0. Clearly, P = N + L. Let p, =
my +n =m' —n and p, = my + 1y = my' — ny, where m; ,mye M,
m, my’ € M', and n, , ny € N, be any two vectors in L. Then,

(P @ pa, 0y = Kmy + m) @ (my + my), w)
= §{(my —m) @ (my — my), w)

= {m @ny, w) = 0.

Hence L is an isotropic subspace of (P, w). Therefore N is a Lagrangian
subspace of (P, w). Q.E.D.

4. PRESYMPLECTIC SPACES

A presymplectic space is a pair (P, w) where P is a vector space and o
is an antisymmetric bilinear form on P. A presymplectic space (P, w) is
symplectic if w is nondegenerate.

Let (P, w) be a presymplectic space and L = {peP|p |w = 0}. We
denote by P7 the quotient space P/L, the canonical projection by p: P — Pr,
and the bilinear form on P" defined by

(1) @ p(P), @™ = (P @ pa, w) forall p;,p,eP

by w?. Clearly, w" is antisymmetric and nondegenerate. The symplectic
space (P, w") is called the reduced space of a presymplectic space (P, w).

Let (P, w) be a presymplectic space and N a subspace of P. We denote
by wy the restriction of w to N. An isotropic subspace of a presymplectic
space (P, w) is a subspace N of P such that wy == 0. This definition is an
extension of the definition of an isotropic subspace of a symplectic space
to the case of a presymplectic space.

5. SYMPLECTIC RELATIONS

Let (P, ;) and (P,, w,) be symplectic spaces. Let P, X P, denote
the product of the vector spaces P; and P, ; it is isomorphic to the direct
sum P; @ P, . The bilinear form w; @ (—w,) on P; X P, is antisymmetric
and nondegenerate, hence (P, X P,, w; @ (—w,)} is a symplectic space.
A linear symplectic relation from (P, , w,) to (P, , w,) is an isotropic subspace
of (P, X Py, w; @D (—wy)). Following the notation of point set theory,
we use the symbol “o” to denote the compeosition of relations and the symbol

505/r7[2~15
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“-1” to denote the inverse. Clearly, a composition of linear symplectic
relations is a linear symplectic relation, and the inverse of a linear symplectic
relation is a linear symplectic relation. Symplectic relations were first
introduced by Hérmander [13].

Exampie 5.1. Let « be a symplectic isomorphism from (P, ;) to
(P, , wy), that is «: P, — P, is a vector space isomorphism such that, for
each p,p' e P, {a(p) @ o(p), wy) = {p @ p, wy>. Then the graph of «
is an isotropic subspace of (P X P,, w; @ (—w,)). Hence the graph of a
symplectic isomorphism is a symplectic relation.

ExampLE 5.2. Let (P, w) be a symplectic space, M a subspace of P,
w)yy the restriction of w to M, (Pr, w") the reduced space of a presymplectic
space (M, wyy), and p: M — P7 the canonical projection. We denote by N
the graph of p imbedded in P x Pr. It is a linear symplectic relation from
(P, w) to (P7, w") called the reduction of a subspace M in (P, w). The inverse
relation N-1 = {(p’, p)e P X P|(p, p') € N} is a linear symplectic relation
from (P7, ") to (P, w) called inverse reduction. The composition N-1o N
is the graph of the identity map in P". The composition NV o N~ is a linear
symplectic relation from (P, w) to itself such that (p, p’)e N1 e N if and
only if p, p’ € M and p(p} = p(p").

Lemma 5.3. A lLinear symplectic relation N from (Py, wy) to (Py, ws)
s the graph of a symplectic isomorphism if and only if pri(N) = P, and
pro(N) = Py, where pry and pr, are the first and second projections from
P, x Py, respectively.

Proof. Let N be a linear symplectic relation from (P; , w,) to (P, , wy)
such that pry(N) = P, and pry(IN) = P,. Suppose (p,, po’) and (p{, p3)
are in N, then (0, p; — p;) € N. Since pry(N) = P,, for each p,eP,,
there exists p; € Py such that (p, , p,) € N, and

0 =(p1,0) ® (0,5 — 2)s 0 @ (—wa)d> = —<p: @ (p7 — P2)y wo>-

Hence, (py — po) | ws = 0 which implies that p; = p,". Therefore N is
the graph of a linear map from P; to P, . Similarly, N is the graph of a
linear map from P, to P, . Since N is a symplectic relation it follows im-
mediately that it is a graph of a symplectic isomorphism.

Conversely, if N is the graph of a symplectic isomorphism, then it is a
linear symplectic relation, pry(N) = Py, and pry(N) = P,. Q.E.D.

ProposITION 5.4. Every linear symplectic relation is a composition of
reduction, a symplectic isomorphism, and an inverse reduction.



SPECIAL SYMPLECTIC SPACES 483

Proof. Let N be a linear symplectic relation from (P , w;) to (P, wy)-
We denote by K the projection of N to Py, K = pry(IN), wy the restriction
of w; to K, (Py", ;") the reduced space of a presymplectic space (K, wy),
and by NN, the symplectic relation from (P, , w,) to (P, ;") corresponding
to the reduction of K in (P, , w,). Similarly, we denote by L the projection
of N to P,, w; the restriction of w, to L, (Py, wy") the reduced space of
a presymplectic space (L, w;), and by N, the reduction of L in {P,, w,).
Let M be the subspace of P;” X P, defined by (p,, p,') € M if and only
if there exists (p,, o) € N such that py(p,) == p and py(ps) = p,” where
p1: K— Py and py: L — Py are the canomical projections. It is easy to
verify using Lemma 5.3 that M is the graph of a symplectic isomorphism
from (P, w,") to (Py, wy"). Moreover, N = N;*o Mo N, , where N is
a reduction, M is a graph of a symplectic isomorphism and N;* is an inverse
reduction, Q.E.D.

6. SPECIAL SYMPLECTIC SPACES

Let P be a vector space, and 6 a bilinear form on P. We denote by
Ly and R, the left and the right characteristic spaces of 6, that is L, =
{peP|<p®p,0) =0forallp’eP},and Ry = {peP|{p' ®p, 0 =0
for all p" e P}. If 4 is antisymmetric its left and right characteristic spaces
are equal.

A symplectic space (P, w) is called special if the following additional
structure is given: a vector space {J, a vector space epimorphism »: P — Q,
and a bilinear form & on P such that (i} § — 67 = w, and (ii) Ker = = R, .
Since the symplectic form w is determined by 6, we shall denote this special
symplectic space by a quadruplet (P, Q, =, 8).

A standard example of a special symplectic space is furnished by a dual
pair of vector spaces (E,F,B) as follows. Let pri: E@F —~ E be the
natural projection, and let 6 be a bilinear form on £ @ F defined by
Le+®E +f)80 = ®f, B> Then 6§ — 67 is a symplectic form
on E@QF, and (E@F, E, pri, §) is a special symplectic space.

Let (P,Q, =, 0) be a special symplectic space. We denote by » the map
from P into O* defined as follows, for each pe P, n(p) is the unique
linear functional on Q such that {(w{p"), 9{p)> = (p ®p", 8 for all
p P

ProposrrioN 6.1. If (P,Q,,8) s a special symplectic space then P
is a product of Q and o(P) with projections w: P — Q and w: P — y(P), and
(Q, (P), , D), where { , > denotes the evaluation form, is a dual pair of
vector spaces.
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Proof. Both maps =: P—>Q and 7: P— 9(P) are epimorphisms. Let
P € P be such that #(p) = 0 and n(p) = 0. Then, for each p' € P,

P ®pI—0 =P @p, 0> —<pRp, 0>
= {m(p), 7(p)> — <=(#'), n(p)> = 0.

Since & — 67 is nondegenerate, this implies that p = 0. Therefore P is a
product of Q and »(P) with projections = and #, respectively.

Further, if {g,7(p)> =0, for all g0, then %(p) = 0. Let gcQ be
such that {g, %(p)> = 0 for all pe P. Since P is a product of Q and n(P)
there exists p € P such that #(p) = ¢ and 5(p) = 0. Then, for each p' € P,
(P ®p,0 — 07> =0 which implies that p = 0. Hence g = #(p) = 0.
Therefore, (Q, 7(P),< , ») is a dual pair of vector spaces. Q.E.D.

7. SPECIAL PRESYMPLECTIC SPACES

A special presymplectic space is a quadruplet (P, O, =, 8), where P and Q
are vector spaces, w: P — ) is a vector space epimorphism, and # is a bilinear
form on P such that the characteristic space of & — 67 is equal to the intersec-
tion Ly N R, of the left and the right characteristic spaces of 8, and
Kerw C Ker 7w + (Lg N Ry).

Given a special presymplectic space (P, O, =, 6) let P7 denote the quotient
space of Pby Ly N Ry, O" = Qfn(Ly N\ Ry), and p: P— P" and 0: Q — Q"
denote the canonical projections. There exists a unique #”": P* — Q" such
that the following diagram commutes:

P20

d e

Pr__i_>Qr

Let 7 be a bilinear form on P7 defined by {p(p,) & p(ps), > = {p1 R p, , 0>.
The antisymmetric part of 7 is a symplectic form on Pr. Further, Ker n” =
Ry . Hence (Pr,Q7, =", 67) is a special symplectic space, it is called the
reduced space of a special presymplectic space (P, Q, =, 6).

If (P, Q, m, 0) is a special presymplectic space we denote by % a map from
P to Q* defined as follows, for each p € P, n(p) is the unique linear functional
on Q such that (#(p"), 5(p)> = <{p R p', 0 for all p’ € P. A special pre-
symplectic space (P, Q, n, 0) is special symplectic if P is a product of Q
and 7(P) with the projections 7 and 7, respectively.
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8. IsoTROPIC SUBSPACES GENERATED BY FORMS

Let (P,Q,, 0) be a special presymplectic space. A subspace N of P
is called an isotropic subspace of (P, Q, w, ) if IV is an isotropic subspace
of the presymplectic space (P, § — 67).

Let K be a subspace of Q and y a symmetric bilinear form on K. The
subspace N of P defined by pe N if and only if =(p)e K and, for each
ge K, {q,7(p)y = {g ®=(p), y) is an isotropic subspace of (P,Q, =, 0),
since p, p” € NV implies

(p®P,0—0 ={p @, 0~ P Qp, O
= (m(p) w(p)> — () (')
= (m(p") @ 7(p), vy — {a(#) @ #(#), v>
= 0.

Tt is called the isotropic subspace generated by y, and y is called the generating
form of N. The quadratic function 3{g ® ¢, y), is called the generating
function of N.

Conversely, let N be an isotropic subspace of (P, §, 7, f) and let K = =(N}.
The restriction of § to N induces a bilinear form y on K as follows, for each
pp N, {a(p) R a(p), v> = {p ® P, &>. Since § — 07 restricted to NV is
identically zero, the form ¢ is symmetric. The form y generates an isotropic
subspace of (P, @, m, §) which clearly contains the original isotropic subspace
N. Therefore if N is maximal isotropic, it coincides with the isotropic
subspace generated by y. The class of isotropic subspaces generated by
forms is in general larger than the class of maximal isotropic subspaces.
A sufficient condition for an isotropic subspace of a special symplectic
space generated by a form to be maximal or Lagrangian is given in the
following propositions.

PropositioN 8.1. Let (P,Q,m, 6) be a special symplectic space, K a
subspace of Q such thai the orthogonal of the complement of K in the dual
pair structure (Q, 9(P), { , D) coincides with K, and y a synumetric bilinear form
on K. The isotropic subspace N generated by v is maximal if #(N) = K.

Proof. Let pe P be such that n(p)e K and {p ® p', 6§ — 7> =0 for
all " e N. This implies that, for each p' e N,
Ca(p') m(p)> — <=(p") @ m(p), vp = <a(p'), n(2)> — <ol p) n(2)>

= <.P @P,: 6> - <P’ @p) 6>
== 0,
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and therefore p e N. If p € P is such that «(p) ¢ K, then there exists p’ € P
such that #(p’) = 0, {g, 9(p")> = 0 for all g€ K, and <{=(p), n(p')) # 0.
The first two of the conditions above imply that p’ € N, while the third
one gives {p Qp, 0 — 07> = —{@(p), 5(p")> # 0. Hence there is no
isotropic subspace containing NN and p. Therefore N is a maximal isotropic
subspace of (P, Q, , 8). Q.E.D.

Proposition 8.2. Let (P,Q,w, 0) be a special symplectic space, K a
subspace of Q and v a symmetric bilinear form on K. The isotropic subspace N
generated by vy is Lagrangian if w(N) = K and there exists a subspace L of Q
suchthat K + L = Qand K' + L' = 5(P), where K’ and L' are the orthogonal
complements of K and L, respectively, in the dual pair (Q, n(P), { , ).

Proof. Let M be the isotropic subspace generated by the zero bilinear
form onL, thatis p € M if and only if #( p) e L and 5( p) e L'. Since n(N) = K,
for each % € K, there exists p € N such that =(p) = & and »(p) agrees with
k |y on K. The direct sum decomposition P = K - L permits an extension
of & |y to a linear functional ]y in 7(P) in such a way that ElyeL’

Let p be any vector in P. Since P is a product of Q and 5(P),Q = K + L,
and 7(P) = K’ + L', there exist ke K, IeL, re K’ and s€L’ such that
a(p) =k + I and n(p) =7 + s. Let p, be the unique vector in P such
that #(p,) = %, and 5(p) =7+ I;T; Clearly, p, e N. Further, let p,
be the unique vector in P such that #(p,) = [ and 5(p,) = s — m
Then p,c M, and p = p, + p, . Therefore M is an isotropic complement of
N in P. Hence N is a Lagrangian subspace of (P, § — 07). Q.E.D.

9. SympLECTIC RELATIONS GENERATED BY FORMS

Let (P,,0;,m,0) and (P;,0,,m,, 0,) be special symplectic spaces.
Then (P; X Py, 0y X Qy,m X my, 6 @ (—0,)) is also a special symplectic
space. A symplectic relation from (P, ,0;,m , 8;) to (Py, 0y, 7y, ;) is an
isotropic subspace N of (P, X Py, Q; X Oy, m X my, 8, BB (—6y)).

Let for each 7 =1, 2,3, (P;,0;, 7, §;) be a special symplectic space,
Ny, a symplectic relation from (P, ,Q, , my, ;) to (P, Oy, my , ;) generated
by a symmetric bilinear form y;, on a subspace K;, of Oy X Oy, and Ny,
a Lagrangian relation from (P,,Q,, my, 05) to (Py, 0y, 5, 0;) generated
by a symmetric bilinear form y,; on a subspace Ky of O, X Q5. We want
to characterize the composite relation N;, o Ny in terms of the generating
forms y;, and y,, . The forms y;, and y,4 can be extended to bilinear sym-
metric forms ;, and Py, on K = (Kj5 X Q) N (Q; X Ky3) such that

)92 %) R (@' & ) 712> = (015 ) ® (g0 92"), vi20»
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and

U011 92,9 ® (@ &, 6) T = U2 96) ® (& &), vew
for all (g;, ¢s, gs) and (g, g5, ¢5') in K. Further, let E;, be the projection
of K, to O, , and E; be the projection of Ky to O, . Then £, N E; is the
projection of K to Q,. We denote by E,', EJ, {(Ey N Eg)' the orthogonal
complements of E;, E;, E; N E;, respectively, in the dual pair

(Qes mlP2), <5 D)

PropostTioN 9.1. Let (E,NE;)) = E,' + E;, then (py,ps)e Py X Py
belongs to Nygo Nog if and only if there exists g€ Qy such that
(71 P1), @2 > 7o Ps)) € K and, for all (ky , ks, k) € K,

{kys By s B3) & (71(P1)s G2 > 75(D9))s V2 + Vozr = <Ry s 1l £1)) — kg o o Pa)-

Proof. Let 7, denote the map from P; X P; to (Q; X Q;)* induced
by the bilinear form 8; @B (—§;), that is, for each (p;,p;)e P, X P; and
each (¢;, g;) €Q; X O;,

s > G) 6P » 23)> = <qi» 9l P:)> — <85> L3}y
= <Pz, & p:» 0i> - ‘<P1‘, ®P7 ’ 05>:

where p; and p; are any vectors in P; and P;, respectively, such that
m(p) = g;and 7w (p;) = ¢q; . 1£( Py, ps) € Nz o Ny , then there exists p, e P,
such that (py, pa) € Nyp and (py, pg) € Nyg . Clearly, (my(py), 7o po), 7 p3)) €K
and, for each (&, &k, , ;) e K|
LRy s kg, k) @ (mo p1), Tol D2), 7ol o)), Va2 + Fas>

= {(Ry , k) @ (m1(p1)s 7o D)) V2> + (R, Rg) R (wa Po)s 7o £3))s Vary

= ((ky 5 ko) ma( P15 P2)> — (B2, k3), Mos( P2 s P5))

= Cky s m(py)> — <y, ma(P3))-

Conversely, let for some (p, , ps) € P; X Py there exists ¢, €, such that

(ry(P1), @2 » mo(p3)) € K and, for all (&, , &, , k) € K,
By s Fey s k3) @ (my( 1)y 4> 7 P3))s Faz + Fas> = Chyy i P1)) — CRs s my( D)
Then there exists p,’ and p; in P, such that my(py) = mo(Ps) = ¢s,
(p1,pe) € Nyg and (p5, ps) € Npg . Hence, for each (&, , &y, k) e K,

LRy 5 ko 5 kg) @ (m1(P1)s G2 > ms(P3))s F12) = by s s(P1)) — kg s e £2' )

and

Ry s ko s Rs) @ (3 21)s Qo » Ta(23))s Fazp = ko s 1o 05)) — <Rg , e Pa)>-

Therefore, for all (ky, ky, k)€K, <{ky,mo(ps — pa)p =0, and so
no(pa’ — p3) € (Ey O EyY . Since (B N Ey) = E, + Ey there exist r’ and r”
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in P, such that my(r') = my(r") = 0, n(r') € E,, n(#r") € E;, and p,’ — p; ==
r'— 7" Let p, = p,' — " = pj — r". Then for each (&, , k) e Ky, ,

(g 5 Fo) @ Mo P15 22> = <kys m( D)) — ko, ma( D)
= Chy, mpr)) — ko s ma(p2)) + <k a(r')>
= Sk, m(p1) — <k ma( 0270
= {(ky , k3) @ (my(P1), 7o £2)), V12)-

Hence (p,, ps) € Nyp. Similarly, (ps, p3) € Nyg. Therefore (pq, p3) € Nyg o Ny,
Q.E.D.

Let Ny 0 Ny; be generated by a symmetric bilinear form y;; on a sub-
space K;; of Q) X Q;. In order to determine K;; and y;, in terms of
Y12 and 7,s let us consider the following dual pair of vector spaces

{01 X Oy X Qs m(P1) X 15(Ps) X 15(F5), B,
where

A1 92 5 33) @ (m(21)s n2(P2)s ms( 23))s B
= g1 > M(P1)> — @2 » M P2)> + <G5 na( P2

We denote by (Kj, X 0) and (0 X K,,)' the S-orthogonal complements of
K, X 0and 0 X K,;, respectively.

PropoSITION 9.2. Let Ny, o Nyy be generated by a symmetric bilinear form
vz on a subspace K, of Q7 X Oy, and let (K, x 0)N (0 X Ky)] =
(Kiz X 0) + (Kyg X 0), then

© (1, qs) belongs to Ky, if and only if there exists q,€Q, such that
(41 92> ¢s) € K and, for all k, € Q, such that (0, k,, 0) € K,
0, %, 0) ® (41> 2> §a)s V22 + Vo> = 05
(i) for each (ky , ks) and (¢ , g3) in K5,
LBy, ks) ® (915 Ga)y 12> = ka5 sy Bs) ® (915 425 95)s Va2 + Voo

where g, is any vector in O, such that (q, , g, , q5) satisfies the condition
(1), and ky is any vector in Q,, such that (k, , k, , ky) € K.

This proposition is essentially a linearized version of Proposition 4.4
of Ref. [21], with the difference that more general spaces than reflexive
Banach spaces are allowed here, and that is why the condition

[(Kis X 0) N (0 X Kyp)]" = (Kia X 0)" 4 (0 X Kyy)'

is needed. Its proof is analogous to the proof of Proposition 4.4 in Ref. [21].
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10. Seconp ORDER SELF-ADJOINT DITFFERENTIAL EQUATIONS

Let 2 be a bounded domain in R* with a piecewise C® boundary 96
That is
k
o2 =) 8,

=1
where the S;’s are pairwise disjoint (# — 1)-dimensional C* submanifolds
of R”, and §; denotes the closure of S; in R", For each I = 1, 2...., &, we

denote by #; the unit normal to S; pointing towards the exterior of {2, and,

by dS; the induced surface element in S;. Let us introduce the notation,
E = C=(2Q), F = C~(Q), and

H= )k( C=(S).

The spaces F and F X H are dual with respect to a bilinear form § defined
as follows, for each feF and (g, (B))eF X H,

SO =Y. [ fudsi— | feds

v

Similarly, the spaces E and H are dual with respect to a bilinear form S,
defined by

C@U)E> =Y, [ ehds,,
=1"5;

for each ec E and each (#;)e H. The dual pair structure (F,F x H, )
gives rise to a special symplectic space (F X F x H,F, m, 6), where
m F X F X H-»F is the projection onto the first factor and

(g B) @ (8 (1)), 0) = " & (& (b)), B>-

Similarly, the dual pair structure (F, H, 7) gives tise to a special symplectic
space (B X H, E, =", §") where n": E X H—> E is the projection to the
first factor and

(e, (7)) @ (¢'s (1)), 07> = (& & (hr), £7-
We denote by w the antisymmetric part of § and by «” the antisymmetric
part of 07, ie., 0 = 0 — 07, " = 7 — @'T,
The subspace M ==F X 0 X Hof F X F X H is a first class $ubspace of

the symplectic space (F X F X H, w) and (M, F, my; , 6;), where my, is the
restriction of 7 to M and 6, is the restriction of 8 to M, is a special pre~

505/17/2-16
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symplectic space. The reduced space of (M, F, my, 8,,) is isomorphic to
(E X H,E,«", 6"). We denote by p: M — E x H the canonical projection
associating to each (f, 0, (&) € M, o(f, 0, (&) = (f | 22, (b)) c E x H.

Let A4 be a linear self-adjoint differential operator on {2. For each feF,

Af = “Z_Jlax (” 3£)+af’

where a,a; €F and a;; = a;;. For any f,f' €F we have the following
Green’s formulae

%)

Sy

[ (z{l{-a—gf—- aff') ax M

(3 oG

Z,j=1

)ds, f FAf' dx

and

3 [ % (oL ray LY measi— [ g4y —pranyax =0 @

=181 ¢,5=1

where #;? denotes the sth component of a unit normal ;. Let N be the
subspace of F X F x H defined by (f, g, (%)) € N if and only if Af = g and

k of .
Z?_,:l Ui Gy mt=hy,
for each [ =1, 2,..., k. From the Green’s formula (IT) it follows that N
is an isotropic subspace of (F X F X H,F,n, #). Further, 0 X F x H is
also an isotropic subspace of (F X F X H,F,m,) and N+ 0 x F x H =
F X F X H. Hence N is Lagrangian. Clearly, #(N) = F, and the Green’s
formula (I) shows that IV is generated by a symmetric bilinear form y on F
defined by the right hand side of (I), i.e.,

T@F 0 =+, 3 ALty — aff )

4,j=1

Let us consider now a differential equation Af = 0. This amounts to
the study of the intersection of N with M = F x 0 x H. Clearly, NN M is
an isotropic subspace of the special presymplectic space (M, F, my, , 65,) and,
7(M) =F = «(N), the form y also generates N N M in the special pre-
symplectic structure (M, F, my, , 0,). The study of Dirichlet problems for
the differential equation Af = 0 corresponds to the transition to the reduced
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space (E X H, E, =", 0). The projection p(N) of N to E X H is an isotropic
subspace of (E X H, E,«", 0"), and it consists of these (e, (B;))e E X H
for which there exists fe F such that Af = 0, f| 22 = ¢, and

n o

> Oy M= I

1.4=1 Wi

The question whether p(IV) is generated by some bilinear form can be

answered in special cases after a more thorough examination of the operator 4.
We discuss two special cases in the subsequent sections.

11. ErLipric BounNpary VALUE ProBLEMS

In addition to the hypotheses of the preceding section let us assume
that 4 is an elliptic operator. We denote by K the projection of p(N) to E,
K = #"(p(N)), that means K is the subspace of all admissible C= Dirichlet
data on 222 for the equation Af = 0. Let L be the subspace of H defined
as follows, ()L i and only if there exists feF such that 4f =0,
floR =0and

n 8f . _
i;l &5 ax]- = hl * l= I’ 2!"‘: k.

Since 4 is elliptic L is a finite dimensional subspace of A, From Fredholm’s
theorems it follows also that e ¢ K if and only if

%
A =0
Z\fste lds;

I=1

for all (&) €L, cf. Ref. [20]. Therefore K is the fr-orthogonal complement
of L. Since L is finite dimensional, K’ = (L'} = L {8]. To show that p(N)
is maxirmal isotropic let us consider (e, (%)) € £ X H such that
da () R, (7)), «> =0 forall (¢, (&) ep(]V).
Then, restricting this condition to 0 X L C p(N), we get
0 = (e, (7)) @ (0, (&), 0" — 07> = (0, (&) ® (e, (y)), 0>
= e @ &), B>

for all (B,) L. Hence ec’ = K, and there exists feF such that 47 = 0
and f| 0Q = e. Let (&) € H be defined as follows, for each [ = 1, 2,..., &,

" ST
h =hl‘—‘ Z a,—,-——a—x—~nf, [ = 1,2,.", k.
d.4=1 g



492 LAWRUK, $NIATYCKI AND TULCZYJEW

Then, for each (¢, (1) € N, (0, (%)) ® (¢, (%)), »™> = 0 and therefore
(e @(h), B> =0 for all ¢ € K. Hence (h)e K’ =L, and there exists
feF such that Af =0, f] 62 = 0, and

:ELS l= 1, 2,..., k.

Further, f + feF and it satisfies the following condltlons, A(f+Ff) =0,
(f+f)| 02 = e, and

S 4 a(f+f)ni=1;l, [=1,2,.,k

i,d=1

which implies that (e, (1)) € p(IV). Therefore p(/V) is a maximal isotropic
subspace of (E x H, E, n", 6"). Every maximal isotropic subspace of a
special symplectic space is generated by a bilinear symmetric form.

The generating form for p(N) is obtained from that for NN M if one
expresses the integral -

[ (Gt o)

in terms of the boundary values of the functions fand f”. It is a generalization
of the Hamilton principal function [15] to the case of a partial differential
equation. The suitable spaces for elliptic differential operators are Sobolev
spaces. The analysis given above extends easily to this case, yielding an
additional result that p(/V) is Lagrangian since every maximal isotropic
subspace of a Hilbert space is Lagrangian (A. Weinstein [24]).

12. »THE Wave EquatioN IN R2

Suppose now that £ is the interior of the square in R? with vertices (0, 0),
{0, 1), (1, 0), and (1, 1), and let Af = 8%//dx% — %f/dy®. The boundary of £
consists of four segments of straight lines. Using the d’Alembert formula
for the solution of the wave equation one can verify that p(N) is a maximal
isotropic subspace of (E X H, E, =%, &) with the projection K = #"(p(IN))
uniquely characterized by the condition: ee K if and only if, for each
2€[0,1], e(z,0) +e(l —2,1) —e(0,2) — (1,1 —2) =0.

The generating function (e ®e,9™> of p(N) can be computed by
expressing the generating function of N N M, given in this case by

KF®f > =1 [ 1@ffow® — (& foy) | d dy,
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in terms of the restriction of f to Q. This gives, for each e K,
e ®e vy

=1 J: {e(0, 2) (%, 0) ~ &(z, 0) £,(0, 2) 4 (3, 1) ey(1, =) —e(1, 2) ez, 1} d=

where e, and e, denote the derivatives of e with respect to the coordinates
x and y, respectively.

Tt should be noted that if we took £ to be the interior of a charac-
teristic square, then p(IN) would not be a maximal isotropic subspace of
(E x H,E,«", 0").

Similar boundary value problems for the wave equation have been studied
by R. A. Aleksandrian [2], [3], [4] and S. L. Sobolev [22].

13. LAGRANGIAN STRUCTURE OVER A GRAPH

In previous sections we have associated to any region in R® a special
symplectic space and to a differential equation in this region an isotropic
subspace. If we have two adjacent regions then the isotropic subspace
corresponding to the differential equation in the union of these regions
can be obtained by composition from the isotropic subspaces corresponding
to each region separately. In many cases, however, one encounters more
general types of relations than binary symplectic relations. We give here a
general framework for this type of relations and illustrate it by a discussion
of a differential equation on a simplicial complex in R”.

A graph is a pair (V/, S) where ¥ is a set and S is a subset of V' X V
such that (u, v) € S implies # 5= v and (v, u) e S. If (V, S) is a graph and
U is a subset of ¥ we denote by BU the subset of S defined by BU =
{w,v)eS|ucl,v¢ Ul

A Lagrangian structure over a graph (¥, S) consists of the following:

(i) A family % of subsets of ¥ such that, for each Ue %, BU is a
finite nonempty set.

(i) A family of special symplectic spaces (Py,Qy , my, 0y) and their
isotropic subspaces Ny generated by symmetric forms y, on Ky CQy,
indexed over #%.

(iii) A family of special symplectic spaces (P, , Ous » Tyw » Fus), indexed
over S.

(ivy A family of vector space epimorphisms oyy,: Py — P,, and
Trwy: Qu > Quy defined for each U e % and each (u, v) € BU.
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The following conditions are satisfied:

(@) Py = Py, Ouo = Ovu > Tuy = oy 5 Oy + Oy = 0.
{(b) The following diagram commutes

O Uup
PU > Pu'v

W

T
QU'——ME’qu

() Pyap =0ifandonlyifoy,,(p) = Oforall(u, v) e BU,Qy2q =0
if and only if 7y,,(q) = O for all (, v) € BU.

(d) For each p, p’ in Py,
<P ®P,’ 7(/.U> = Z <Uqu(p) ® UUWD(P')» 0uc>~

{u,v)eBU

(¢) Foreach Ue % and each finite family & C % consisting of pairwise
disjoint subsets of U covering U, the isotropic subspace Ny is
related to the isotropic subspaces Ny, X € Z, as follows: py € Ny
if and only if, for each X € Z, there exists a py € Ny such that

(@)  oxul Px) = oyl Py), Whenever (u, v) € BX, (v, 1) € BY and
X, YeZ;

(B) oxue(Px) = oyuf pu), Whenever (u, v} e BX N BUand X € .,

Given Ue % and a finite family Z C % consisting of pairwise disjoint
subsets of U covering U, we denote by K the subspace of X y.a Ky such
that (gy) € K if and only if 74,,(¢x) = Trou(gr) Whenever (, ) € BX and
(v, w) € BY. Under the assumptions analogous to those in Proposition 9.2
the subspace Ky of Oy, is uniquely characterized by the following condition,
gy € Ky if and only if there exists (¢y) € K such that 74,,(¢x) = Tyuu(qu)
whenever (u, )€ BX N BU and, for all (ky) € K such that 74, (ky) = 0
whenever (u, v) e BX N BU,

Z <kx @ gx,yx> = 0.

Xe¥

Further, the generating form y; of N is given as follows. For each %y
and ¢y in Ky,

Sy ®@qu,ved = Y, <kx ®qx, v
Xe¥

where (ky) and (gy) are any elements of K satisfying together with (ky)
and (gy), respectively, the conditions given above.
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Consider a simplicial complex in R” such that R™ is the space of the
complex. Let V be the set of all #-simplices in the complex and let S be
the subset of V7 x V consisting of all pairs of different #-simplices in the
complex having an (z — 1)-simplex as a common face. Then (I, S) is a
graph. Let % be the family of all finite, nonempty subsets of V. For each
Ue 4, BU is finite and nonempty. Let, for each U e %, 2, be the interior
of the union of the spaces of all n-simplices in U. Clearly, £2;; is open and
relatively compact. Let for each (u, v)e BU, S,, be the interior of the
{n — 1)-simplex which is the common face of € U and v ¢ U. Then

aQU - U Sub"

(u,v)eBU

Let, for each (u,72)€S, Q,, = C=(S,,), P., = C(S..) X C*(S,.),
7yt Pyy — Oy, be the projection onto the first factor. Further, let n,, be
the unit normal to §,, directed towards the interior of the n-simplex o,
and let 48, be the surface element in S, induced by the volume in R"
and the orientation of the normal #,,,, . Then n,,, = —n,, and S, = —dS,, .

Let 8, be the bilinear form on P,, defined for each (e, &), (¢, #') e P,, by
(e by @ (¢, 1), 00> = | B dS,,.
SMU
Clearly 8,, = —0,, and (P, , Quy, myy , 0y,) is a special symplectic space.

For each Ue %, letQy = C=(62y), Hy = Xpu C*(Suo), Py = Qv X Hy,
my: Py — Qp be the projection onto the first factor, and let ¥7 be the
bilinear form on Py defined, for each (e, 4,,) and (¢, &.,,) in Py, by

e ) ® (€ i) V> = Y [ €hyy dS,-

BU ¥ Sur

Then (Py,Qu ., 7y, Yy) is a special symplectic space.

For each (4, v) € BU we denote by 7y,,,: Qv — O, the restriction map,
i.c. for each e € Oy = C=(082y), Tyu.(€) is the restriction of e to S, C 82;;,
and by oyy,: Py — Py, the map defined by oy, (e, i) = (Trusle), Huo)-
Both maps are vector space epimorphisms and the conditions (a), (b}, (c),
and (d} are satisfied.

Let 4: C*(R") — C=*(R") be a linear self-adjoint elliptic differential
operator of second order, given by

Af = an 3—1‘(%]“58{7) -+ af.
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For each U € % we denote by Ny, the isotropic subspace of (P, Qy , 7y, Y)
defined as follows: (e, k,,) € Ny if and only if there exists an fe C=(2y)
such that Af =0, f| 2, = C and, for each (u, v) € BU,

n o
o i,
Z a; ox. L uy
2.3=1 7

Then the family {Ny}y.4 satisfies the condition (e). Hence this construction
gives an example of a Lagrangian structure over a graph as defined above.
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