171 research outputs found
A proteomic investigation of Aspergillus carbonarius exposed to yeast volatilome or to its major component 2-phenylethanol reveals major shifts in fungal metabolism
The use of yeast-derived volatile organic compounds (VOCs) represents a promising strategy for the biological control of various plant pathogens, including mycotoxin-producing fungi. Previous studies demonstrated the efficacy of the low-fermenting yeast Candida intermedia isolate 253 in reducing growth, sporulation, and ochratoxin A biosynthesis by Aspergillus carbonarius MPVA566. This study aimed to investigate whether the inhibitory effect of the yeast volatilome is solely attributable to 2-phenylethanol, its major component, or if a synergistic effect of all volatilome components is required to achieve an effective control of the fungal growth and metabolism. Microbiological methods, HPLC measurements and a UPLC-MS/MS approach were used to investigate the metabolic profile of A. carbonarius MPVA566 at different growing conditions: standard incubation (control), exposed to C. intermedia 253 volatilome, and incubation in the presence of 2-phenylethanol. Both yeast volatilome and 2-phenylethanol succeeded in the macroscopic inhibition of the radial mycelial growth, along with a significant reduction of ochratoxin A production. Functional classification of the fungal proteome identified in the diverse growing conditions revealed a different impact of both yeast VOCs and 2-phenylethanol exposure on the fungal proteome. Yeast VOCs target an array of metabolic routes of fungal system biology, including a marked reduction in protein biosynthesis, proliferative activity, mitochondrial metabolism, and particularly in detoxification of toxic substances. Exposure to 2-phenylethanol only partially mimicked the metabolic effects observed by the whole yeast volatilome, with protein biosynthesis and proliferative activity being reduced when compared with the control samples, but still far from the VOCs-exposed condition. This study represents the first investigation on the effects of yeast-derived volatilome and 2-phenylethanol on the metabolism of a mycotoxigenic fungus by means of proteomics analysis. Chemical compounds studied or used in this article: 2-Phenylethanol (PubChem CID: 6054); ochratoxin-A (PubChem CID: 442530); sodium dodecyl sulfate (PubChem CID: 3423265); dithiothreitol (PubChem CID: 446094); phenylmethylsulfonyl fluoride (PubChem CID: 4784); iodoacetamide (PubChem CID: 3727); ammonium bicarbonate (PubChem CID: 14013); acetic acid (PubChem CID: 176); and acetonitrile (PubChem CID: 6342). - 2019 The AuthorsThis publication was made possible by NPRP grant # 8-392-4-003 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.Scopu
Gut–brain axis and neurodegeneration : State-of-the-art of meta-omics sciences for microbiota characterization
Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bidirectional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut\u2013brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer\u2019s disease (AD), Parkinson\u2019s disease (PD), and amyotrophic lateral sclerosis (ALS)
Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses
Several research lines are currently ongoing to address the multitude of facets of the pandemic COVID-19. In line with the One-Health concept, extending the target of the studies to the animals which humans are continuously interacting with may favor a better understanding of the SARS-CoV-2 biology and pathogenetic mechanisms; thus, helping to adopt the most suitable containment measures. The last two decades have already faced severe manifestations of the coronavirus infection in both humans and animals, thus, circulating epitopes from previous outbreaks might confer partial protection from SARS-CoV-2 infections. In the present study, we provide an in-silico survey of the major nucleocapsid protein epitopes and compare them with the homologues of taxonomically-related coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Protein sequence alignment provides evidence of high sequence homology for some of the investigated proteins. Moreover, structural epitope mapping by homology modelling revealed a potential immunogenic value also for specific sequences scoring a lower identity with SARS-CoV-2 nucleocapsid proteins. These evidence provide a molecular structural rationale for a potential role in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies
Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19
Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies
Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective
This article reviews the present state of Quantitative Structure-Property
Relationships (QSPR) in glass design and gives an outlook into future developments.
First an overview is given of the statistical methodology, with particular emphasis
to the integration of QSPR with molecular dynamics simulations to derive informative
structural descriptors. Then, the potentiality of this approach as a tool for
interpretative and predictive purposes is highlighted by a number of recent inspiring
applications
Investigation on viscosity and non-isothermal crystallization behavior of P-bearing steelmaking slags with varying TiO2 content
The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal–melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase (n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from −265.93 to −185.41 KJ·mol−1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize
- …