495 research outputs found
Nuclear Structure Studies at ISOLDE and their Impact on the Astrophysical r-Process
The focus of the present review is the production of the heaviest elements in
nature via the r-process. A correct understanding and modeling requires the
knowledge of nuclear properties far from stability and a detailed prescription
of the astrophysical environment. Experiments at CERN/ISOLDE have played a
pioneering role in exploring the characteristics of nuclear structure in terms
of masses and beta-decay properties. Initial examinations paid attention to far
unstable nuclei with magic neutron numbers related to r-process peaks, while
present activities are centered on the evolution of shell effects with the
distance from the valley of stability. We first show in site-independent
applications the effect of both types of nuclear properties on r-process
abundances. Then, we explore the results of calculations related to two
different `realistic' astrophysical sites, (i) the supernova neutrino wind and
(ii) neutron star mergers. We close with a list of remaining theoretical and
experimental challenges needed to overcome for a full understanding of the
nature of the r-process, and the role CERN/ISOLDE can play in this process.Comment: LATEX, 38 pages, 16 figures, submitted to Hyperfine Interaction
Long-term evolution of massive star explosions
We examine simulations of core-collapse supernovae in spherical symmetry. Our
model is based on general relativistic radiation hydrodynamics with
three-flavor Boltzmann neutrino transport. We discuss the different supernova
phases, including the long-term evolution up to 20 seconds after the onset of
explosion during which the neutrino fluxes and mean energies decrease
continuously. In addition, the spectra of all flavors become increasingly
similar, indicating the change from charged- to neutral-current dominance.
Furthermore, it has been shown recently by several groups independently, based
on sophisticated supernova models, that collective neutrino flavor oscillations
are suppressed during the early mass-accretion dominated post-bounce evolution.
Here we focus on the possibility of collective flavor flips between electron
and non-electron flavors during the later, on the order of seconds, evolution
after the onset of an explosion with possible application for the
nucleosynthesis of heavy elements.Comment: 12 pages, 7 figures, conference proceeding, HANSE 2011 worksho
Inhomogeneous Chemical Evolution of r-process Elements in the Galactic Halo
For the production of r-process elements in our Galaxy, multiple sites have been discussed, among others, core-collapse supernovae and neutron star mergers. We use the observed elemental abundances of europium (Eu) in metal poor stars to reproduce the galactic chemical evolution of r-process elements. Our main findings are that additionally to neutron star mergers, a second, early acting site is necessary. We assume âmagnetorotationally driven supernovaeâ act as this additional and earlier r-process site and conclude that our simulations with an adequate combination of these two sites successfully reproduces the observed r-process elemental abundances in the Galactic halo
Inhomogeneous chemical evolution of r-process elements
We report the results of a galactic chemical evolution (GCE) study for r-process- and alpha elements. For this work, we used the inhomogeneous GCE model "ICE", which allows to keep track of the galactic abundances of elements produced by different astrophysical sites. The main input parameters for this study were: a) The Neutron Star Merger (NSM) coalescence time scale, the probability of NSMs, and for the sub-class of "magneto-rotationally driven Supernovae" ("Jet-SNe"), their occurence rate in comparison to "standard" Supernovae (SNe)
Nucleosynthesis Basics and Applications to Supernovae
This review concentrates on nucleosynthesis processes in general and their
applications to massive stars and supernovae. A brief initial introduction is
given to the physics in astrophysical plasmas which governs composition
changes. We present the basic equations for thermonuclear reaction rates and
nuclear reaction networks. The required nuclear physics input for reaction
rates is discussed, i.e. cross sections for nuclear reactions,
photodisintegrations, electron and positron captures, neutrino captures,
inelastic neutrino scattering, and beta-decay half-lives. We examine especially
the present state of uncertainties in predicting thermonuclear reaction rates,
while the status of experiments is discussed by others in this volume (see M.
Wiescher). It follows a brief review of hydrostatic burning stages in stellar
evolution before discussing the fate of massive stars, i.e. the nucleosynthesis
in type II supernova explosions (SNe II). Except for SNe Ia, which are
explained by exploding white dwarfs in binary stellar systems (which will not
be discussed here), all other supernova types seem to be linked to the
gravitational collapse of massive stars (M8M) at the end of their
hydrostatic evolution. SN1987A, the first type II supernova for which the
progenitor star was known, is used as an example for nucleosynthesis
calculations. Finally, we discuss the production of heavy elements in the
r-process up to Th and U and its possible connection to supernovae.Comment: 52 pages, 20 figures, uses cupconf.sty (included); to appear in
"Nuclear and Particle Astrophysics", eds. J. Hirsch., D. Page, Cambridge
University Pres
Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach
For the origin of heavy rapid neutron capture process (r-process) elements, different sources have been proposed, e.g. core-collapse supernovae or neutron star mergers. Old metal-poor stars carry the signature of the astrophysical source(s). Among the elements dominantly made by the r-process, europium (Eu) is relatively easy to observe. In this work we simulate the evolution of Eu in our Galaxy with the inhomogeneous chemical evolution (ICE) model, and compare our results with spectroscopic observations. We test the most important parameters affecting the chemical evolution of Eu: (a) for neutron star mergers the coalescence time-scale of the merger (tcoal) and the probability to experience a neutron star merger event after two supernova explosions occurred and formed a double neutron star system (PNSM) and (b) for the subclass of magnetorotationally driven supernovae (âJet-SNe'), their occurrence rate compared to standard supernovae (PJet-SN). We find that the observed [Eu/Fe] pattern in the Galaxy can be reproduced by a combination of neutron star mergers and Jet-SNe as r-process sources. While neutron star mergers alone seem to set in at too high metallicities, Jet-SNe provide a cure for this deficiency at low metallicities. Furthermore, we confirm that local inhomogeneities can explain the observed large spread in the Eu abundances at low metallicities. We also predict the evolution of [O/Fe] to test whether the spread in α-elements for inhomogeneous models agrees with observations and whether this provides constraints on supernova explosion models and their nucleosynthesi
Galactic evolution of rapid neutron capture process abundances: The inhomogeneous approach
For the origin of heavy r-process elements, different sources have been proposed, e.g., core-collapse supernovae or neutron star mergers. Old metal-poor stars carry the signature of the astrophysical source(s). Among the elements dominantly made by the r-process, europium (Eu) is relatively easy to observe. In this work we simulate the evolution of europium in our galaxy with the inhomogeneous chemical evolution model âICEâ, and compare our results with spectroscopic observations. We test the most important parameters affecting the chemical evolution of Eu: (a) for neutron star mergers, the coalescence time scale of the merger (tcoal) and the probability to experience a neutron star merger event after two supernova explosions occurred and formed a double neutron star system (PNSM) and (b) for the sub-class of magneto-rotationally driven supernovae (âJet-SNeâ), their occurrence rate compared to standard supernovae (PJetâSN). We find that the observed [Eu/Fe] pattern in the galaxy can be reproduced by a combination of neutron star mergers and magneto-rotationally driven supernovae as r-process sources. While neutron star mergers alone seem to set in at too high metallicities, Jet-SNe provide a cure for this deficiency at low metallicities. Furthermore, we confirm that local inhomogeneities can explain the observed large spread in the europium abundances at low metallicities. We also predict the evolution of [O/Fe] to test whether the spread in α-elements for inhomogeneous models agrees with observations and whether this provides constraints on supernova explosion models and their nucleosynthesis
- âŠ