27,078 research outputs found

    Decoherence at constant excitation

    Full text link
    We present a simple exactly solvable extension of of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×44\times 4 matrices

    Shaping the waveform of entangled photons

    Full text link
    We demonstrate experimentally the tunable control of the joint spectrum, i.e. waveform and degree of frequency correlations, of paired photons generated in spontaneous parametric downconversion. This control is mediated by the spatial shape of the pump beam in a type-I noncollinear configuration. We discuss the applicability of this technique to other sources of frequency entangled photons, such as electromagnetically induced Raman transitions.Comment: 5 Pages, 4 Figure

    Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: The effects of including recombination energy

    Get PDF
    Detached WD+MS PCEBs are perhaps the most suitable objects for testing predictions of close-compact binary-star evolution theories, in particular, CE evolution. The population of WD+MS PCEBs has been simulated by several authors in the past and compared with observations. However, most of those predictions did not take the possible contributions to the envelope ejection from additional sources of energy (mostly recombination energy) into account. Here we update existing binary population models of WD+MS PCEBs by assuming that a fraction of the recombination energy available within the envelope contributes to ejecting the envelope. We performed Monte Carlo simulations of 10^7 MS+MS binaries for 9 different models using standard assumptions for the initial primary mass function, binary separations, and initial-mass-ratio distribution and evolved these systems using the publicly available BSE code. Including a fraction of recombination energy leads to a clear prediction of a large number of long orbital period (>~10 days) systems mostly containing high-mass WDs. The fraction of systems with He-core WD primaries increases with the CE efficiency and the existence of very low-mass He WDs is only predicted for high values of the CE efficiency (>~0.5). All models predict on average longer orbital periods for PCEBs containing C/O-core WDs than for PCEBs containing He WDs. This effect increases with increasing values of both efficiencies. Longer periods after the CE phase are also predicted for systems containing more massive secondary stars. The initial-mass-ratio distribution affects the distribution of orbital periods, especially the distribution of secondary star masses. Our simulations, in combination with a large and homogeneous observational sample, can provide constraints on the values of the CE efficiencies, as well as on the initial-mass-ratio distribution for MS+MS binary stars.Comment: 11 pages, 10 figures, accepted for publication in A&

    Robust array configuration for a microwave interferometric radiometer: application to the geoSTAR project

    Get PDF
    The Geostationary Synthetic Thinned Array Radiometer represents a promising new approach to microwave atmospheric sounding from geostationary orbit based on passive interferometry. One of the major concerns about the feasibility of this new concept is related to the ability of the sensor to cope with the failure of one or several of its single receivers/antennas. This letter shows that the inclusion of a small percentage of additional antennas significantly reduces the degradation of radiometric resolution caused by such receiver failure. Impact of antenna failure is analyzed, taking into account two test images with very different spatial harmonic content. A tradeoff analysis of several array topologies is performed so as to minimize the number of additional antennas while keeping worst case radiometric error within a reasonable level.Peer Reviewe

    Comunicação digital nas redes de pesquisa.

    Get PDF
    A missão das instituições de pesquisa, desenvolvimento e inovação tecnológica (PD&I) é a produção de conhecimento e a geração e transferência de informações, conhecimentos e tecnologias para a sociedade. As tecnologias digitais e as demandas impostas pelos ambientes externos exige destas instituições um tipo de comunicação dinâmica, interativa e imbricada aos tempos sociais dos diversos atores com os quais se relacionam. Neste sentido, as redes de pesquisa interinstitucionais, cujos pilares conceituais são a autonomia, a interdependência de recursos e as ações colaborativas, caracterizam-se como canais que favorecem a interação e o intercâmbio de esforços, ampliando as chances destas instituições obterem resultados mais sistêmicos e integrados.ABRAPCORP 2012

    Radio sources in the Chandra Galactic Bulge Survey

    Get PDF
    We discuss radio sources in the Chandra Galactic Bulge Survey region. By cross-matching the X-ray sources in this field with the NRAO VLA Sky Survey archival data, we find 12 candidate matches. We present a classification scheme for radio/X-ray matches in surveys taken in or near the Galactic plane, taking into account other multiwavelength data. We show that none of the matches found here is likely to be due to coronal activity from normal stars because the radio to X-ray flux ratios are systematically too high. We show that one of the source could be a radio pulsar, and that one could be a planetary nebula, but that the bulk of the sources are likely to be background active galactic nuclei (AGN), with many confirmed through a variety of approaches. Several of the AGN are bright enough in the near-infrared (and presumably in the optical) to use as probes of the interstellar medium in the inner Galaxy
    corecore