11,986 research outputs found

    Wages, racial composition, and quality sorting in labor markets

    Get PDF
    This paper examines the relationship between wage rates and the racial composition of jobs, using large cross-sectional and longitudinal samples constructed from monthly Current Population Surveys for 1983-92. Support is found for a "quality sorting" model that posits an equilibrium in which the racial composition of jobs serves as a skill index of unmeasured labor quality. Estimation of standard wage-level equations shows that wages of both black and white workers are substantially lower in occupations with a high density of blacks. Consistent with the quality sorting hypothesis, the magnitude of the relationship is reduced sharply after accounting for occupational skill measures. Longitudinal wage-change estimates controlling for person-specific quality indicate little if any causal effect of racial composition on wages. Estimates of racial discrimination are reduced only moderately after accounting for racial composition; unexplained differentials occur within occupations or reflect inter-occupational differences uncorrelated with racial composition and occupational skill measures.

    Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey

    Get PDF
    Context A large number of magnetic white dwarfs discovered in the SDSS have so far only been analyzed by visual comparison of the observations with relatively simple models of the radiation transport in a magnetised stellar atmosphere. Aims We model the structure of the surface magnetic fields of the hydrogen-rich white dwarfs in the SDSS. Methods We calculated a grid of state-of-the-art theoretical optical spectra of hydrogen-rich magnetic white dwarfs (WDs) with magnetic field strengths of between 1 MG and 1200 MG for different angles between the magnetic field vector and the line of sight,and for effective temperatures between 7000 K and 50 000 K. We used a least squares minimization scheme with an evolutionary algorithm to find the best-fit magnetic field geometry of the observed data. We used centered dipoles or dipoles that had been shifted along the dipole axis to model the coadded SDSS fiber spectrum of each object. Result We analyzed the spectra of all known magnetic hydrogen-rich (DA) WDs from the SDSS (97 previously published, plus 44 newly discovered) and also investigated the statistical properties of the magnetic field geometries of this sample. Conclusions The total number of known magnetic white dwarfs has already been more than tripled by the SDSS and more objects are expected after more systematic searches. The magnetic fields have strengths of between ≈1 and 900 MG. Our results further support the claims that Ap/Bp population is insufficient in generating the numbers and field strength distributions of the observed MWDs, and that of either another source of progenitor types or binary evolution is needed. Clear indications of non-centered dipoles exist in about ∼50%, of the objects which is consistent with the magnetic field distribution observed in Ap/Bp stars

    Electromotive forces and the Meissner effect puzzle

    Get PDF
    In a voltaic cell, positive (negative) ions flow from the low (high) potential electrode to the high (low) potential electrode, driven by an `electromotive force' which points in opposite direction and overcomes the electric force. Similarly in a superconductor charge flows in direction opposite to that dictated by the Faraday electric field as the magnetic field is expelled in the Meissner effect. The puzzle is the same in both cases: what drives electric charges against electromagnetic forces? I propose that the answer is also the same in both cases: kinetic energy lowering, or `quantum pressure'

    Invisible Higgs Boson Decays in Spontaneously Broken R-Parity

    Get PDF
    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the Standard Model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate non-zero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the Next to Minimal Supersymmetric Standard Model (NMSSM) scenario for solving the μ\mu-problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.Comment: 24 pages, 10 figures; typos corrected, published versio

    Supersymmetric seesaw type II: CERN LHC and lepton flavour violating phenomenology

    Full text link
    We study the supersymmetric version of the type-II seesaw mechanism assuming minimal supergravity boundary conditions. We calculate branching ratios for lepton flavour violating (LFV) scalar tau decays, potentially observable at the LHC, as well as LFV decays at low energy, such as li→lj+γl_i \to l_j + \gamma and compare their sensitivity to the unknown seesaw parameters. In the minimal case of only one triplet coupling to the standard model lepton doublets, ratios of LFV branching ratios can be related unambigously to neutrino oscillation parameters. We also discuss how measurements of soft SUSY breaking parameters at the LHC can be used to indirectly extract information of the seesaw scale.Comment: 25 pages, 14 figures, references and appendix added, minor corrections; final version published in Phys.Rev.

    Vlasov simulation in multiple spatial dimensions

    Full text link
    A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown promising results, in this paper we present an alternative, the Vlasov Multi Dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement

    Electronic ground states of Fe2+_2^+ and Co2+_2^+ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy

    Full text link
    The 6Π^6\Pi electronic ground state of the Co2+_2^+ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, 6Φ^6\Phi, 8Φ^8\Phi, and 8Γ^8\Gamma, for the electronic ground state of Fe2+_2^+ have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d3d transition elements cannot generally be assumed to be connected by a one-electron process

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure

    Accurate Noise Projection for Reduced Stochastic Epidemic Models

    Full text link
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model. Through the use of a normal form coordinate transform, we are able to analytically derive the stochastic center manifold along with the associated, reduced set of stochastic evolution equations. The transformation correctly projects both the dynamics and the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement, both in amplitude and phase, with the solution of the original stochastic system for a temporal scale that is orders of magnitude longer than the typical relaxation time. This new method allows for improved time series prediction of the number of infectious cases when modeling the spread of disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered in the infinite population limit using a Langevin equation approach, as well as in a finite population simulated as a Markov process.Comment: 38 pages, 10 figures, new title, Final revision to appear in Chao
    • …
    corecore