6,246 research outputs found

    Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    Get PDF
    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed

    A modified method of integral relations approach to the blunt-body equilibrium air flow field, including comparisons with inverse solutions

    Get PDF
    Numerical calculation of inviscid adiabatic flow field around blunt bodies at hypersonic speed

    Magnification Ratio of the Fluctuating Light in Gravitational Lens 0957+561

    Full text link
    Radio observations establish the B/A magnification ratio of gravitational lens 0957+561 at about 0.75. Yet, for more than 15 years, the optical magnfication ratio has been between 0.9 and 1.12. The accepted explanation is microlensing of the optical source. However, this explanation is mildly discordant with (i) the relative constancy of the optical ratio, and (ii) recent data indicating possible non-achromaticity in the ratio. To study these issues, we develop a statistical formalism for separately measuring, in a unified manner, the magnification ratio of the fluctuating and constant parts of the light curve. Applying the formalism to the published data of Kundi\'c et al. (1997), we find that the magnification ratios of fluctuating parts in both the g and r colors agrees with the magnification ratio of the constant part in g-band, and tends to disagree with the r-band value. One explanation could be about 0.1 mag of consistently unsubtracted r light from the lensing galaxy G1, which seems unlikely. Another could be that 0957+561 is approaching a caustic in the microlensing pattern.Comment: 12 pages including 1 PostScript figur

    High-z radio starbursts host obscured X-ray AGN

    Get PDF
    We use Virtual Observatory methods to investigate the association between radio and X-ray emission at high redshifts. Fifty-five of the 92 HDF(N) sources resolved by combining MERLIN+VLA data were detected by Chandra, of which 18 are hard enough and bright enough to be obscured AGN. The high-z population of microJy radio sources is dominated by starbursts an order of magnitude more active and more extended than any found at z<1 and at least a quarter of these simultaneously host highly X-ray-luminous obscured AGN.Comment: 4 pages, 2 figures, To appear in the proceedings of 'At the Edge of the Universe' (9-13 October 2006, Sintra, Portugal

    Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    Get PDF
    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEUs calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEUs by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU's. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU’s was 72, yielding a total of 248 predicted SEU’s, very close to the 243 observed SEU’s. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU’s during the October 1989 solar particle events
    • …
    corecore