811 research outputs found

    Some theoretical results on semiconductor spherical quantum dots

    Full text link
    We use an improved version of the standard effective mass approximation model to describe quantum effects in nanometric semiconductor Quantum Dots (QDs). This allows analytic computation of relevant quantities to a very large extent. We obtain, as a function of the QD radius, in precise domains of validity, the QD excitonic ground state energy and its Stark and Lamb shifts. Finally, the Purcell effect in QDs is shown to lead to potential QD-LASER emitting in the range of visible light

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    Increased susceptibility to proactive interference in adults with dyslexia?

    Get PDF
    Recent findings show that people with dyslexia have an impairment in serial-order memory. Based on these findings, the present study aimed to test the hypothesis that people with dyslexia have difficulties dealing with proactive interference (PI) in recognition memory. A group of 25 adults with dyslexia and a group of matched controls were subjected to a 2-back recognition task, which required participants to indicate whether an item (mis)matched the item that had been presented 2 trials before. PI was elicited using lure trials in which the item matched the item in the 3-back position instead of the targeted 2-back position. Our results demonstrate that the introduction of lure trials affected 2-back recognition performance more severely in the dyslexic group than in the control group, suggesting greater difficulty in resisting PI in dyslexia.Peer reviewedFinal Accepted Versio

    1D Exciton Spectroscopy of Semiconductor Nanorods

    Full text link
    We have theoretically shown that optical properties of semiconductor nanorods are controlled by 1D excitons. The theory, which takes into account anisotropy of spacial and dielectric confinement, describes size dependence of interband optical transitions, exciton binding energies. We have demonstrated that the fine structure of the ground exciton state explains the linear polarization of photoluminescence. Our results are in good agreement with the measurements in CdSe nanorods

    Absorption Enhancement in Lossy Transition Metal Elements of Plasmonic Nanosandwiches

    Get PDF
    Combination of catalytically active transition metals and surface plasmons offers a promising way to drive chemical reactions by converting incident visible light into energetic electron-hole pairs acting as a mediator. In such a reaction enhancement scheme, the conversion efficiency is dependent on light absorption in the metal. Hence, increasing absorption in the plasmonic structure is expected to increase generation of electron-hole pairs and, consequently, the reaction rate. Furthermore, the abundance of energetic electrons might facilitate new reaction pathways. In this work we discuss optical properties of homo- and heterometallic plasmonic nanosandwiches consisting of two parallel disks made of gold and palladium. We show how near-field coupling between the sandwich elements can be used to enhance absorption in one of them. The limits of this enhancement are investigated using finite-difference time-domain simulations. Physical insight is gained through a simple coupled dipole analysis of the nanostructure. For small palladium disks (compared to the gold disk), total absorption enhancement integrated over the near visible solar AM 1.5 spectrum is 8-fold, while for large palladium disks, similar in size to the gold one, it exceeds three

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    Subtypes of children with attention disabilities.

    Get PDF
    Subtypes of children with attentional problems were investigated using cluster analysis. Subjects were 9-year-old-elementary school children (N = 443). The test battery administered to these children comprised a comprehensive set of common attention tests, covering different aspects of attentional functioning, and a test of reading comprehension. Cluster analysis of these data yielded eight stable and reproducible clus¬ters. The test profiles of two subgroups were indicative of distinct attentional problems. One group ap¬peared deficient in speed of processing, the other in attentional control. A third subgroup showed a reading deficit. Two additional clusters had very poor and excellent performance on the whole battery, respec¬tively. Finally, three clusters were found with minor variations approximating average performance. The internal validity, that is, the adequacy and stability of the cluster solution, appeared to be reasonably good, as indicated by a variety of measures. The long-term stability over an 18-month period was also checked and found to be satisfactory

    A single-electron transistor made from a cadmium selenide nanocrystal

    Full text link
    The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals, whose dimensions are much smaller than those that can be realized using lithographic techniques. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties. Preliminary studies of both the electrical and optical properties of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots and small metallic grains.Comment: 3 pages, PDF forma
    • …
    corecore