299 research outputs found
Causes of Stillbirth and Time of Death in Swedish Holstein Calves Examined Post Mortem
This study was initiated due to the observation of increasing and rather high levels of stillbirths, especially in first-calving Swedish Holstein cows (10.3%, 2002). Seventy-six Swedish Holstein calves born to heifers at 41 different farms were post mortem examined in order to investigate possible reasons for stillbirth and at what time in relation to full-term gestation they had occurred. The definition of a stillborn calf was dead at birth or within 24 h after birth after at least 260 days of gestation. Eight calves were considered as having died already in uterus. Slightly less than half of the examined calves (46.1%) were classified as having died due to a difficult calving. Four calves (5.3%) had different kinds of malformations (heart defects, enlarged thymus, urine bladder defect). Approximately one third of the calves (31.6%) were clinically normal at full-term with no signs of malformation and born with no indication of difficulties at parturition or any other reason that could explain the stillbirth. The numbers of male and female calves were rather equally distributed within the groups. A wide variation in post mortem weights was seen in all groups, although a number of the calves in the group of clinically normal calves with unexplained reason of death were rather small and, compared with e.g. those calves categorised as having died due to a difficult calving, their average birth weight was 6 kg lower (39.9 ± 1.7 kg vs. 45.9 ± 1.5 kg, p ≤ 0.01). It was concluded that the cause of stillbirth with a non-infectious aetiology is likely to be multifactorial and difficult calving may explain only about half of the stillbirths. As much as one third of the calves seemed clinically normal with no obvious reason for death. This is a target group of calves that warrants a more thorough investigation in further studies
Controlling domain patterns far from equilibrium
A high degree of control over the structure and dynamics of domain patterns
in nonequilibrium systems can be achieved by applying nonuniform external
fields near parity breaking front bifurcations. An external field with a linear
spatial profile stabilizes a propagating front at a fixed position or induces
oscillations with frequency that scales like the square root of the field
gradient. Nonmonotonic profiles produce a variety of patterns with controllable
wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at
http://t7.lanl.gov/People/Aric
Competing Patterns of Signaling Activity in Dictyostelium discoideum
Quantitative experiments are described on spatio-temporal patterns of
coherent chemical signaling activity in populations of {\it Dictyostelium
discoideum} amoebae. We observe competition between spontaneously firing
centers and rotating spiral waves that depends strongly on the overall cell
density. At low densities, no complete spirals appear and chemotactic
aggregation is driven by periodic concentric waves, whereas at high densities
the firing centers seen at early times nucleate and are apparently entrained by
spiral waves whose cores ultimately serve as aggregation centers. Possible
mechanisms for these observations are discussed.Comment: 10 pages, RevTeX, 4 ps figures, accepted in PR
Order Parameter Equations for Front Transitions: Planar and Circular Fronts
Near a parity breaking front bifurcation, small perturbations may reverse the
propagation direction of fronts. Often this results in nonsteady asymptotic
motion such as breathing and domain breakup. Exploiting the time scale
differences of an activator-inhibitor model and the proximity to the front
bifurcation, we derive equations of motion for planar and circular fronts. The
equations involve a translational degree of freedom and an order parameter
describing transitions between left and right propagating fronts.
Perturbations, such as a space dependent advective field or uniform curvature
(axisymmetric spots), couple these two degrees of freedom. In both cases this
leads to a transition from stationary to oscillating fronts as the parity
breaking bifurcation is approached. For axisymmetric spots, two additional
dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron:
http://www.bgu.ac.il/BIDR/research/staff/meron.htm
Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications
In a weakly excitable medium, characterized by a large threshold stimulus,
the free end of an isolated broken plane wave (wave tip) can either rotate
(steadily or unsteadily) around a large excitable core, thereby producing a
spiral pattern, or retract causing the wave to vanish at boundaries. An
asymptotic analysis of spiral motion and retraction is carried out in this
weakly excitable large core regime starting from the free-boundary limit of the
reaction-diffusion models, valid when the excited region is delimited by a thin
interface. The wave description is shown to naturally split between the tip
region and a far region that are smoothly matched on an intermediate scale.
This separation allows us to rigorously derive an equation of motion for the
wave tip, with the large scale motion of the spiral wavefront slaved to the
tip. This kinematic description provides both a physical picture and exact
predictions for a wide range of wave behavior, including: (i) steady rotation
(frequency and core radius), (ii) exact treatment of the meandering instability
in the free-boundary limit with the prediction that the frequency of unstable
motion is half the primary steady frequency (iii) drift under external actions
(external field with application to axisymmetric scroll ring motion in
three-dimensions, and spatial or/and time-dependent variation of excitability),
and (iv) the dynamics of multi-armed spiral waves with the new prediction that
steadily rotating waves with two or more arms are linearly unstable. Numerical
simulations of FitzHug-Nagumo kinetics are used to test several aspects of our
results. In addition, we discuss the semi-quantitative extension of this theory
to finite cores and pinpoint mathematical subtleties related to the thin
interface limit of singly diffusive reaction-diffusion models
The commodification of human reproductive materials.
This essay develops a framework for thinking about the moral basis for the commnodification of human reproductive nmaterials. It argues that selling and buyinlg gametes and genes is morally acceptable although there should not be a market for zygotes, embryos, or genomes. Also a market in gametes and genes shouild be regutlated in order to address concerns about the adverse social consequences of conmmodification. Originally published Journal of Medical Ethics, Vol. 24, No. 6, Dec 199
Challenges in conducting community-driven research created by differing ways of talking and thinking about science: a researcher’s perspective
Increasingly, health scientists are becoming aware that research collaborations that include community partnerships can be an effective way to broaden the scope and enhance the impact of research aimed at improving public health. Such collaborations extend the reach of academic scientists by integrating a variety of perspectives and thus strengthening the applicability of the research. Communication challenges can arise, however, when attempting to address specific research questions in these collaborations. In particular, inconsistencies can exist between scientists and community members in the use and interpretation of words and other language features, particularly when conducting research with a biomedical component. Additional challenges arise from differing perceptions of the investigative process. There may be divergent perceptions about how research questions should and can be answered, and in expectations about requirements of research institutions and research timelines. From these differences, misunderstandings can occur about how the results will ultimately impact the community. These communication issues are particularly challenging when scientists and community members are from different ethnic and linguistic backgrounds that may widen the gap between ways of talking and thinking about science, further complicating the interactions and exchanges that are essential for effective joint research efforts. Community-driven research that aims to describe the burden of disease associated with Helicobacter pylori infection is currently underway in northern Aboriginal communities located in the Yukon and Northwest Territories, Canada, with the goal of identifying effective public health strategies for reducing health risks from this infection. This research links community representatives, faculty from various disciplines at the University of Alberta, as well as territorial health care practitioners and officials. This highly collaborative work will be used to illustrate, from a researcher’s perspective, some of the challenges of conducting public health research in teams comprising members with varying backgrounds. The consequences of these challenges will be outlined, and potential solutions will be offered
From chemical gardens to chemobrionics
Chemical gardens in laboratory chemistries ranging from silicates to polyoxometalates, in applications ranging from corrosion products to the hydration of Portland cement, and in natural settings ranging from hydrothermal vents in the ocean depths to brinicles beneath sea ice. In many chemical-garden experiments, the structure forms as a solid seed of a soluble ionic compound dissolves in a solution containing another reactive ion. In general any alkali silicate solution can be used due to their high solubility at high pH. The cation should not precipitate with the counterion of the metal salt used as seed. A main property of seed chemical-garden experiments is that initially, when the fluid is not moving under buoyancy or osmosis, the delivery of the inner reactant is diffusion controlled. Another experimental technique that isolates one aspect of chemical-garden formation is to produce precipitation membranes between different aqueous solutions by introducing the two solutions on either side of an inert carrier matrix. Chemical gardens may be grown upon injection of solutions into a so-called Hele-Shaw cell, a quasi-two-dimensional reactor consisting in two parallel plates separated by a small gap
Electroosmotic flow reversal outside glass nanopores.
We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt concentration depends on the pore diameter. Finite-element simulations indicate a competition between the EOF generated from the inner and outer walls of the pore, which drives flows in opposite directions. We have developed a simple analytical model which reveals that, as the salt concentration is reduced, the flow rates inside the pore are geometrically constrained, whereas there is no such limit for flows outside the pore. This model captures all of the essential physics of the system and explains the observed data, highlighting the key role the external environment plays in determining the overall electroosmotic behavior
Modeling relationships between calving traits: a comparison between standard and recursive mixed models
<p>Abstract</p> <p>Background</p> <p>The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL), calving difficulty (CD) and stillbirth (SB). All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype.</p> <p>Methods</p> <p>Four models were compared in terms of goodness of fit and predictive ability: 1) standard mixed model (SMM), a model with unstructured (co)variance matrices; 2) recursive mixed model 1 (RMM1), assuming that residual correlations are due to the recursive relationships between phenotypes; 3) RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4) RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes.</p> <p>Results</p> <p>For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB.</p> <p>Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible.</p> <p>Conclusions</p> <p>The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the phenotypic recursion may be an important cause of the observed patterns of genetic and environmental correlations.</p
- …