450 research outputs found

    PD1-Expressing T Cell Subsets Modify the Rejection Risk in Renal Transplant Patients

    Get PDF
    We tested whether multi-parameter immune phenotyping before or after renal ­transplantation can predict the risk of rejection episodes. Blood samples collected before and weekly for 3 months after transplantation were analyzed by multi-parameter flow cytometry to define 52 T cell and 13 innate lymphocyte subsets in each sample, producing more than 11,000 data points that defined the immune status of the 28 patients included in this study. Principle component analysis suggested that the patients with histologically confirmed rejection episodes segregated from those without rejection. Protein death 1 (PD-1)-expressing subpopulations of regulatory and conventional T cells had the greatest influence on the principal component segregation. We constructed a statistical tool to predict rejection using a support vector machine algorithm. The algorithm correctly identified 7 out of 9 patients with rejection, and 14 out of 17 patients without rejection. The immune profile before transplantation was most accurate in determining the risk of rejection, while changes of immune parameters after transplantation were less accurate in discriminating rejection from non-rejection. The data indicate that pretransplant immune subset analysis has the potential to identify patients at risk of developing rejection episodes, and suggests that the proportion of PD1-expressing T cell subsets may be a key indicator of rejection risk

    CD8 T cell tolerance to a tumor-associated self-antigen is reversed by CD4 T cells engineered to express the same T cell receptor

    Get PDF
    Ag receptors used for cancer immunotherapy are often directed against tumor-associated Ags also expressed in normal tissues. Targeting of such Ags can result in unwanted autoimmune attack of normal tissues or induction of tolerance in therapeutic T cells. We used a murine model to study the phenotype and function of T cells redirected against the murine double minute protein 2 (MDM2), a tumor-associated Ag that shows low expression in many normal tissues. Transfer of MDM2-TCR-engineered T cells into bone marrow chimeric mice revealed that Ag recognition in hematopoietic tissues maintained T cell function, whereas presentation of MDM2 in nonhematopoietic tissues caused reduced effector function. TCR-engineered CD8(+) T cells underwent rapid turnover, downmodulated CD8 expression, and lost cytotoxic function. We found that MDM2-TCR-engineered CD4(+) T cells provided help and restored cytotoxic function of CD8(+) T cells bearing the same TCR. Although the introduction of the CD8 coreceptor enhanced the ability of CD4(+) T cells to recognize MDM2 in vitro, the improved self-antigen recognition abolished their ability to provide helper function in vivo. The data indicate that the same class I-restricted TCR responsible for Ag recognition and tolerance induction in CD8(+) T cells can, in the absence of the CD8 coreceptor, elicit CD4 T cell help and partially reverse tolerance. Thus MHC class I-restricted CD4(+) T cells may enhance the efficacy of therapeutic TCR-engineered CD8(+) T cells and can be readily generated with the same TCR

    CD8(+) T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo

    Get PDF
    Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+ Tim-3+ KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+ , Tim-3+ , and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus

    CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion

    Get PDF
    Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Metaverse-Retail Service Quality: A Future Framework for Retail Service Quality in the 3D Internet

    Get PDF
    This paper argues that service quality in retailing in 3D Collaborative Virtual Environments (aka Metaverses) is distinct from service quality in the more familiar 2D mainly menu-driven web internet store (e-SQ). The study identifies and conceptualises the determinants of Metaverse Retailing service quality (MR-SQ) through a combination of focus groups and Critical Incident Technique. A set of four overarching determining elements of MR-SQ was revealed including customer service, product dimension, store dimension and 3D platform dimension. These incorporate some of the features found in 2D e-SQ but importantly the study indicated new characteristics, unique to MR-SQ. The CVE context presents opportunities for retailers in enhancing social experience, responsive service and creative co-production opportunities. It is within these gaps that respondents identified in 2D retailing that current CVEs and the future Web 3.0 hold appealing prospects for enhancing and producing creative and co-operative online retailing service quality (MR-SQ). The study provides a framework for guidance for retailers as well as for future research. Summary Statement of Contribution: The paper establishes new understanding of the determinants of Metaverse Retailing-Service Quality (MR-SQ). For virtual worlds in general and for service quality in particular, this study shows new MR-SQ dimensions, overlapping dimensions with different meanings to MR-SQ compares to e-SQ, and similar dimensions in both MR-SQ and e-SQ

    Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint

    Get PDF
    Determining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells. ACAT inhibition reduces CD8+ T cell neutral lipid droplets and promotes lipid microdomains, enhancing TCR signalling and TCR-independent bioenergetics. Dysfunctional HBV- and HCC-specific T cells are rescued by ACAT inhibitors directly ex vivo from human liver and tumour tissue respectively, including tissue-resident responses. ACAT inhibition enhances in vitro responsiveness of HBV-specific CD8+ T cells to PD-1 blockade and increases the functional avidity of TCR-gene-modified T cells. Finally, ACAT regulates HBV particle genesis in vitro, with inhibitors reducing both virions and subviral particles. Thus, ACAT inhibition provides a paradigm of a metabolic checkpoint able to constrain tumours and viruses but rescue exhausted T cells, rendering it an attractive therapeutic target for the functional cure of HBV and HBV-related HCC

    Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4⁺ T Cells

    Get PDF
    In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation
    corecore