10 research outputs found

    Dead or alive: animal sampling during Ebola hemorrhagic fever outbreaks in humans

    Get PDF
    There are currently no widely accepted animal surveillance guidelines for human Ebola hemorrhagic fever (EHF) outbreak investigations to identify potential sources of Ebolavirus (EBOV) spillover into humans and other animals. Animal field surveillance during and following an outbreak has several purposes, from helping identify the specific animal source of a human case to guiding control activities by describing the spatial and temporal distribution of wild circulating EBOV, informing public health efforts, and contributing to broader EHF research questions. Since 1976, researchers have sampled over 10,000 individual vertebrates from areas associated with human EHF outbreaks and tested for EBOV or antibodies. Using field surveillance data associated with EHF outbreaks, this review provides guidance on animal sampling for resource-limited outbreak situations, target species, and in some cases which diagnostics should be prioritized to rapidly assess the presence of EBOV in animal reservoirs. In brief, EBOV detection was 32.7% (18/55) for carcasses (animals found dead) and 0.2% (13/5309) for live captured animals. Our review indicates that for the purposes of identifying potential sources of transmission from animals to humans and isolating suspected virus in an animal in outbreak situations, (1) surveillance of free-ranging non-human primate mortality and morbidity should be a priority, (2) any wildlife morbidity or mortality events should be investigated and may hold the most promise for locating virus or viral genome sequences, (3) surveillance of some bat species is worthwhile to isolate and detect evidence of exposure, and (4) morbidity, mortality, and serology studies of domestic animals should prioritize dogs and pigs and include testing for virus and previous exposure

    Anthropozoonotic Giardia duodenalis genotype (assemblage) a infections in habitats of free-ranging human-habituated gorillas, Uganda

    Get PDF
    To facilitate ecotourism and research, free-ranging mountain gorillas of Uganda have been habituated to humans. Testing of fecal samples of gorillas (n = 100), people sharing gorilla habitats (n = 62), and local pre- and postweaned cattle (n = 50) having access to these habitats with fluorescein isothiocyanate-conjugated monoclonal antibodies revealed Giardia duodenalis cysts at prevalences of 2.5, and 10%, respectively. The identification of G. duodenalis was confirmed by fluorescent in situ hybridization with 2 species-specific 18-bp oligonucleotide probes conjugated to hexachlorinated 6-carboxyfluorescein. The mean pathogen concentration was 2.5, 2.8, and 0.2 × 104 cysts/g of the gorilla, people, and cattle feces, respectively. All cyst isolates aligned with genotype (assemblage) A, as confirmed by polymerase chain reaction amplification and sequencing of a 130-bp region near the 5′ end of the small subunit-ribosomal RNA gene. A single genotype (assemblage) A recovered from 3 genetically distant but geographically united host groups indicates anthropozoonotic transmission of G. duodenalis. A large percentage of the local community does not follow park regulations regarding the disposal of their fecal waste, as self-reported in a questionnaire. This genotype may have been introduced into gorilla populations through habituation activities and may have then been sustained in their habitats by anthropozoonotic transmission

    Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus

    Get PDF
    The evolutionary origins of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) are unknown. Current evidence suggests that insectivorous bats are likely to be the original source, as several 2c CoVs have been described from various species in the family Vespertilionidae. Here, we describe a MERS-like CoV identified from a Pipistrellus cf. hesperidus bat sampled in Uganda (strain PREDICT/PDF-2180), further supporting the hypothesis that bats are the evolutionary source of MERS-CoV. Phylogenetic analysis showed that PREDICT/PDF-2180 is closely related to MERS-CoV across much of its genome, consistent with a common ancestry; however, the spike protein was highly divergent (46% amino acid identity), suggesting that the two viruses may have different receptor binding properties. Indeed, several amino acid substitutions were identified in key binding residues that were predicted to block PREDICT/PDF-2180 from attaching to the MERS-CoV DPP4 receptor. To experimentally test this hypothesis, an infectious MERS-CoV clone expressing the PREDICT/PDF-2180 spike protein was generated. Recombinant viruses derived from the clone were replication competent but unable to spread and establish new infections in Vero cells or primary human airway epithelial cells. Our findings suggest that PREDICT/PDF-2180 is unlikely to pose a zoonotic threat. Recombination in the S1 subunit of the spike gene was identified as the primary mechanism driving variation in the spike phenotype and was likely one of the critical steps in the evolution and emergence of MERS-CoV in humans
    corecore