1,306 research outputs found

    Real Estate Brokers\u27 Contracts Within the Statute of Frauds

    Get PDF
    That the dictates of the law and the principles of common morality are not always blended to perfection is not a startlingly new pronouncement. Undoubtedly the courts use every legitimate means at their disposal in forming their decrees to enforce conduct that we are pleased to regard as called for in the name of simple honesty. But in at least one situation the Statute of Frauds has appeared to many courts to prevent a decree harmonizing law and justice. The type situation is that P, being desirous of purchasing a piece of realty, orally engages A to negotiate the purchase with X, the present owner. The deed is to be taken in P\u27s name, and P is to secure the funds or the credit needed to pay for the land. At the time P orally engages A, neither of them have any interest in the land, or contract with respect to it. A then approaches X, who has no knowledge of P, and arranges for a conveyance. However, he causes the deed to run to himself, and pays the purchase price with his own funds. Immediately thereafter A sells the land to some third person, making a handsome profit. P, upon learning of the facts, seeks to impose a constructive trust on the profits made by A. On being confronted with this situation in the recent case of Carkonen v. Alberts, the Supreme Court of Washington, relying on two sections of our Statute of Frauds, concluded that no constructive trust could be imposed. In so deciding, the court is in line with a great many other jurisdictions

    Organic sulfur: a spatially variable and understudied component of marine organic matter

    Get PDF
    Ā© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Longnecker, K., Oswald, L., Soule, M. C. K., Cutter, G. A., & Kujawinski, E. B. Organic sulfur: a spatially variable and understudied component of marine organic matter. Limnology and Oceanography Letters, (2020), doi:10.1002/lol2.10149.Sulfur (S) is a major heteroatom in organic matter. This project evaluated spatial variability in the concentration and molecularā€level composition of organic sulfur along gradients of depth and latitude. We measured the concentration of total organic sulfur (TOS) directly from whole seawater. Our data reveal high variability in organic sulfur, relative to established variability in total organic carbon or nitrogen. The deep ocean contained significant amounts of organic sulfur, and the concentration of TOS in North Atlantic Deep Water (NADW) decreased with increasing age while total organic carbon remained stable. Analysis of dissolved organic matter extracts by ultrahigh resolution mass spectrometry revealed that 6% of elemental formulas contained sulfur. The sulfurā€containing compounds were structurally diverse, and showed higher numbers of sulfurā€containing elemental formulas as NADW moved southward. These measurements of organic sulfur in seawater provide the foundation needed to define the factors controlling organic sulfur in the global ocean.We thank Catherine Carmichael, Winifred Johnson, and Gretchen Swarr for assistance with sample collection and processing, and Joe Jennings for the analysis of inorganic nutrients. The help of the captain and crew of the R/V Knorr and the other cruise participants during the ā€œDeepDOMā€ cruise is appreciated. Two anonymous reviewers and Patricia Soranno provided thorough comments that greatly improved the manuscript. The ultrahigh resolution mass spectrometry samples were analyzed at the WHOI FTā€MS Users' Facility that is funded by the National Science Foundation (grant OCEā€0619608) and the Gordon and Betty Moore Foundation (GMBF1214). This project was funded by NSF grants OCEā€1154320 (to EBK and KL), the W.M. Marquet Award (to KL), and OCEā€1435708 (to GAC). The authors declare no conflicts of interest

    A Comparison Between the Theoretical and Measured Longitudinal Stability Characteristics of an Airplane

    Get PDF
    This report covers an investigation of the application of the theory of dynamic longitudinal stability, based on the assumption of small oscillations, to oscillations an airplane is likely to undergo in flight. The investigation was conducted with a small parasol monoplane for the fixed-stick condition. The period and damping of longitudinal oscillations were determined by direct measurements of oscillations in flight and also by calculation in which the factors that enter the theoretical stability equation were determined in flight. A comparison of the above-mentioned characteristics obtained by these two methods indicates that the theory is applicable to the conditions encountered in flight

    Dissolved organic matter produced by Thalassiosira pseudonana

    Get PDF
    Author Posting. Ā© The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 168 (2015): 114-123, doi:10.1016/j.marchem.2014.11.003.Phytoplankton are significant producers of dissolved organic matter (DOM) in marine ecosystems but the identity and dynamics of this DOM remain poorly constrained. Knowledge on the identity and dynamics of DOM are crucial for understanding the molecular-level reactions at the base of the global carbon cycle. Here we apply emerging analytical and computational tools from metabolomics to investigate the composition of DOM produced by the centric diatom Thalassiosira pseudonana. We assessed both intracellular metabolites within T. pseudonana (the endo-metabolome) and extracellular metabolites released by T. pseudonana (the exo-metabolome). The intracellular metabolites had a more variable composition than the extracellular metabolites. We putatively identified novel compounds not previously associated with T. pseudonana as well as compounds that have previously been identified within T. pseudonanaā€™s metabolic capacity (e.g. dimethylsulfoniopropionate and degradation products of chitin). The resulting information will provide the basis for future experiments to assess the impact of T. pseudonana on the composition of dissolved organic matter in marine environments.Instrumentation in the WHOI FT-MS facility was funded by the National Science Foundation MRI program (OCE-0619608) and by the Gordon and Betty T. Moore Foundation (Grant #1214). This work was supported by NSF grant OCE-0928424 to EBK

    Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics

    Get PDF
    Ā© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography: Methods 15 (2017): 417ā€“428, doi:10.1002/lom3.10181.The field of metabolomics seeks to characterize the suite of small molecules that comprise the end-products of cellular regulation. Metabolomics has been used in biomedical applications as well as environmental studies that explore ecological and biogeochemical questions. We have developed a targeted metabolomics method using electrospray ionizationā€“liquid chromatography tandem mass spectrometry to analyze metabolites dissolved in seawater. Preparation of samples from the marine environment presents challenges because dilute metabolites must be concentrated and desalted. We present the extraction efficiencies of 89 metabolites in our targeted method using solid phase extraction (SPE). In addition, we calculate the limits of detection and quantification for the metabolites in the method and compare the instrument response factors in five different matrices ranging from deionized water to spent medium from cultured marine microbes. High background organic matter content reduces the instrument response factor for only a small group of metabolites, yet enhances the extraction efficiency for other metabolites on the SPE cartridge used here, a modified styrene-divinylbenzene polymer called PPL. Aromatic or larger uncharged compounds, in particular, are reproducibly well retained on the PPL polymer. This method is suitable for the detection of dissolved metabolites in marine samples, with limits of detection ranging fromā€‰<ā€‰1 pM to āˆ¼ 2 nM dependent on the dual impacts of seawater matrix on extraction efficiency and on instrument response factors.Gordon and Betty Moore Foundation Grant Number: 3304; National Science Foundation Grant Number: OCE-1154320; Simons Foundation Internationa

    Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP

    Get PDF
    Ā© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 10 (2016): 2304ā€“2316, doi:10.1038/ismej.2016.6.Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter.This research is funded in part by the Gordon and Betty Moore Foundation through Grant GBMF3304 as well as by the National Science Foundation (Grants OCE-0928424 and OCE-1154320)

    Rapid ascent and emplacement of basaltic lava during the 2005ā€“06 eruption of the East Pacific Rise at ca. 9Ā°51ā€²N as inferred from CO2 contents

    Get PDF
    Ā© The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 453 (2016): 152-160, doi:10.1016/j.epsl.2016.08.007.Eruption rates at the midā€“ocean ridges (MORs) are believed to strongly control the morphology and length of lava flows emplaced along the ridge axis, and thus the structure and porosity of the upper oceanic crust. Eruption rate also represents one of the few tools to gain insight into the driving pressures within sub-ridge magmatic systems. As eruption rate is inferred to vary systematically along the global mid-ocean ridge, understanding of how to assess eruption rate in submarine systems and how it maps to observable features of the ridge axis would provide a powerful tool to understand Earth's largest magmatic system. Eruption rates at MORs are poorly constrained, however, because of a lack of direct observations, preventing the duration of an eruption to be quantified. This study uses decompression experiments of MORB samples and numerical modeling of CO2 degassing to reconstruct the timescales for magma ascent and lava emplacement during the 2005ā€“06 eruption of the East Pacific Rise at ca. 9Ā°51ā€™N. Samples collected from the lava flow are all supersaturated in dissolved CO2 contents, but CO2 decreases with distance from the vent, presumably as a consequence of progressive CO2 diffusion into growing bubbles. Samples collected at the vent contain ~105 vesicles per cm3. Pieces of these samples were experimentally heated to 1225Ā°C at high pressure and then decompressed at controlled rates. Results, plus those from numerical modeling of diffusive bubble growth, indicate that magma rose from the axial magma chamber to the seafloor in ā‰¤1 hour and at a rate of ā‰„2ā€“3 km hr-1. Our modeling, as validated by experimental decompression of MORB samples with ~106 vesicles cm-3, also suggests that CO2 degassed from the melt within ~10ā€“100 minutes as the vesicular lava traveled ~ 1.7 km along the seafloor, implying a volumetric flow rate on order of 103ā€“4 m3 s-1. Given an ascent rate of ā‰„0.2 m s-1, the width of a rectangular dike feeding the lava would have been ~1ā€“2 meters wide. MORB samples from the Pacific ridge are generally more supersaturated in dissolved CO2 than those from slower spreading Atlantic and Indian ridges. Our results suggest that Pacific MORBs ascend to the seafloor faster than Atlantic or Indian MORBsThis project was partially funded by a grant to J.E.G. from the U.S. National Science Foundation (OCE-1333882).2017-08-2

    Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongatusā€…CCMP 1631

    Get PDF
    Author Posting. Ā© The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Society for Applied Microbiology for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 17 (2015): 3949ā€“3963, doi:10.1111/1462-2920.12899.Photoautotrophic plankton in the surface ocean release organic compounds that fuel secondary production by heterotrophic bacteria. Here we show that an abundant marine cyanobacterium, Synechococcus elongatus, contributes a variety of nitrogen-rich and sulfur-containing compounds to dissolved organic matter. A combination of targeted and untargeted metabolomics and genomic tools was used to characterize the intracellular and extracellular metabolites of S. elongatus. Aromatic compounds such as 4-hydroxybenzoic acid and phenylalanine, as well as nucleosides (e.g., thymidine, 5ā€™-methylthioadenosine, xanthosine), the organosulfur compound 3-mercaptopropionate, and the plant auxin indole 3-acetic acid, were released by S. elongatus at multiple time points during its growth. Further, the amino acid kynurenine was found to accumulate in the media even though it was not present in the predicted metabolome of S. elongatus. This indicates that some metabolites, including those not predicted by an organismā€™s genome, are likely excreted into the environment as waste; however, these molecules may have broader ecological relevance if they are labile to nearby microbes. The compounds described herein provide excellent targets for quantitative analysis in field settings to assess the source and lability of dissolved organic matter in situ.This project was funded by the Gordon and Betty Moore Foundation through Grant #3304 to E. Kujawinski.2016-07-0

    A phosphate starvation response gene (psr1-like) is present and expressed in Micromonas pusilla and other marine algae

    Get PDF
    Ā© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fiore, C. L., Alexander, H., Soule, M. C. K., & Kujawinski, E. B. A phosphate starvation response gene (psr1-like) is present and expressed in Micromonas pusilla and other marine algae. Aquatic Microbial Ecology, 86, (2021): 29ā€“46, https://doi.org/10.3354/ame01955.Phosphorus (P) limits primary production in regions of the surface ocean, and many plankton species exhibit specific physiological responses to P deficiency. The metabolic response of Micromonas pusilla, an ecologically relevant marine photoautotroph, to P deficiency was investigated using metabolomics and comparative genomics. The concentrations of some intracellular metabolites were elevated in the P-deficient cells (e.g. xanthine, inosine), and genes involved in the associated metabolic pathways shared a predicted conserved amino acid motif in the non-coding regions of each gene. The presence of the conserved motif suggests that these genes may be co-regulated, and the motif may constitute a regulatory element for binding a transcription factor, specifically that of Psr1 (phosphate starvation response). A putative phosphate starvation response gene ( psr1-like) was identified in M. pusilla with homology to well characterized psr1/ phr1 genes in algae and plants, respectively. This gene appears to be present and expressed in other marine algal taxa (e.g. Emiliania huxleyi) in field sites that are chronically P limited. Results from the present study have implications for understanding phytoplankton taxon-specific roles in mediating P cycling in the ocean.This research was funded by the Gordon and Betty Moore Foundation through Grant GBMF3304 to E.B.K., and it was partially supported by a grant from the Simons Foundation (Award ID 509034 to E.B.K.)
    • ā€¦
    corecore