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Abstract 13 

Phytoplankton are significant producers of dissolved organic matter (DOM) in marine 14 

ecosystems but the identity and dynamics of this DOM remain poorly constrained. Knowledge 15 

on the identity and dynamics of DOM are crucial for understanding the molecular-level reactions 16 

at the base of the global carbon cycle. Here we apply emerging analytical and computational 17 

tools from metabolomics to investigate the composition of DOM produced by the centric diatom 18 

Thalassiosira pseudonana. We assessed both intracellular metabolites within T. pseudonana (the 19 

endo-metabolome) and extracellular metabolites released by T. pseudonana (the exo-20 

metabolome). The intracellular metabolites had a more variable composition than the 21 

extracellular metabolites. We putatively identified novel compounds not previously associated 22 

with T. pseudonana as well as compounds that have previously been identified within T. 23 

pseudonana’s metabolic capacity (e.g. dimethylsulfoniopropionate and degradation products of 24 

chitin). The resulting information will provide the basis for future experiments to assess the 25 

impact of T. pseudonana on the composition of dissolved organic matter in marine 26 

environments.   27 
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1 Introduction 28 

Autotrophic microbes play a central role in the global carbon cycle because they fix 29 

inorganic carbon into organic compounds. A fraction of this organic material is released into the 30 

surrounding environment as dissolved organic matter (DOM), where it supports microbial 31 

growth or is respired to carbon dioxide (del Giorgio and Cole, 1998; Kirchman, 2008). The rates 32 

of utilization or remineralization of individual compounds are determined by their structure, 33 

concentration, and the metabolic properties of ambient microorganisms (Azam and Worden, 34 

2004). Thus, the molecular-level composition of DOM is an important factor in our 35 

understanding of the global carbon cycle. Despite the significance of photosynthesis in the 36 

production of organic matter, we know little about the molecular-level composition of 37 

photosynthetically-derived DOM and the environmental factors that govern its production 38 

(reviewed in: Carlson, 2002; Kujawinski, 2011). 39 

Centric and pennate diatoms bloom in both coastal and open ocean settings where up to 40 

40% of carbon fixation in marine ecosystems is attributed to these organisms (Nelson et al., 41 

1995; Tréguer et al., 1995). The centric diatom Thalassiosira pseudonana has received 42 

significant attention as a laboratory model organism (Bowler et al., 2010). It was the first diatom 43 

with a completed genome, although function could only be determined for half of the genes 44 

(Armbrust et al., 2004). More recently, there have been genomic, transcriptomic, and proteomic 45 

investigations of T. pseudonana which have revealed dynamic responses to growth state, light, 46 

and nutrients (Dyhrman et al., 2012; Montsant et al., 2007; Norden-Krichmar et al., 2011; Nunn 47 

et al., 2009; Shi et al., 2013). Yet our knowledge of T. pseudonana’s impact on the composition 48 

of organic matter in marine environments has not been well-explored.  49 
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Metabolomics is an emerging analytical approach that seeks to characterize metabolites 50 

produced by an organism during growth or released following cell death. In targeted 51 

metabolomics, a limited set of known metabolites is quantified as a function of the process under 52 

study. In contrast, untargeted metabolomics investigations (e.g., Böttcher et al., 2008; Long et 53 

al., 2011) have no pre-defined list of metabolites and use qualitative, or semi-quantitative, mass 54 

spectrometry to examine all possible features. Untargeted metabolomics datasets are immense 55 

with thousands of resolved features, and informatics and statistical tools are employed to identify 56 

the subset of biologically relevant compounds (Patti et al., 2012). Although complete 57 

characterization is not feasible with available analytical methodologies, practitioners have used 58 

electrospray ionization (ESI) mass spectrometry (MS) and nuclear magnetic resonance 59 

spectrometry (NMR) to resolve and identify important molecules within plant systems (Iijima et 60 

al., 2008; Quanbeck et al., 2012) and within model microorganisms such as Escherichia coli 61 

(Rabinowitz and Kimball, 2007). These projects have provided valuable information on method 62 

development and computational tools which have allowed detailed examinations of the chemical 63 

interactions between biological entities and their habitats.  64 

In the marine ecosystem, metabolic assessments of microorganisms have focused on 65 

phytoplankton such as cyanobacteria (Baran et al., 2010; Bennette et al., 2011) and diatoms (Paul 66 

et al., 2009). Experiments with these microbes have revealed that variability in phytoplankton-67 

derived metabolites can be linked to growth stage (Barofsky et al., 2009; Vidoudez and Pohnert, 68 

2012), nutrient limitation (Bromke et al., 2013), and are affected by the presence of co-cultured 69 

phytoplankton (Paul et al., 2009). Although recovery of targeted compounds has been used to 70 

optimize metabolite extraction and analysis methods (Bennette et al., 2011), structural 71 

characterization and identification of most metabolites remains challenging (Baran et al., 2010).  72 
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The goal of this project was an exploration of the molecular-level composition of 73 

metabolites produced by an autotrophic microorganism in order to characterize the metabolites 74 

released into the marine environment as a result of photoautotrophic processes. We extracted 75 

intracellular and extracellular metabolites from a laboratory culture of T. pseudonana and 76 

examined their composition over time with liquid chromatography coupled to ultrahigh 77 

resolution mass spectrometry (LC/FT-ICR-MS). Our analysis confirmed the presence of 78 

metabolites previously identified as part of T. pseudonana’s metabolic capacity as well as 79 

specific metabolites not previously known to occur in T. pseudonana.  80 

2 Experimental section 81 

2.1 Culturing Thalassiosira pseudonana  82 

The diatom Thalassiosira pseudonana (CCMP culture #1335) was cultured axenically in 83 

a modified version of L1 media made with an artificial salt solution (Turks Island Salts) with 84 

extra silicate (212 µmol L-1) and 10 µmol L-1 selenous acid. The cultures were initiated by 85 

adding 30 ml of T. pseudonana in exponential growth to twelve flasks with an additional six 86 

flasks serving as cell-free controls; each flask initially contained 300 ml of media. The cultures 87 

were incubated at 12ºC under a 12h:12h light:dark cycle. Samples were collected six hours into 88 

the light cycle on days 0, 1, 3, 7, 8, and 10. Three flasks were destructively sampled at each time: 89 

two replicates with T. pseudonana and one cell-free control. In order to characterize the temporal 90 

variability in DOM and include cell-free controls, we could not accommodate more than two 91 

replicates with T. pseudonana and the cell-free control for each time point. 92 

2.2 Ancillary samples 93 

At each time point, sample aliquots were removed for total organic carbon and nutrient 94 

analyses, and for cell counts. Unfiltered water samples for total organic carbon were acidified to 95 
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pH = 2 with 12 M hydrochloric acid, and stored at 4ºC until analysis on a Shimadzu TOC-VCSH 96 

total organic carbon analyzer. The coefficient of variability between replicate injections was 97 

<1%. Comparisons to standards provided by Prof. D. Hansell (University of Miami) were made 98 

daily to verify that the measured concentrations of the standard fell within the consensus values 99 

for total organic carbon. The unfiltered water samples were also used to obtain concentrations of 100 

nitrate + nitrite, ammonium, silicate, and phosphate using a Lachat Instruments QuickChem 101 

8000 continuous flow injection system. For cell counts, samples were fixed with 10% 102 

formaldehyde (final concentration) and stored at -80ºC until cells were counted using a Reichert 103 

hemocytometer. The formaldehyde-fixed cells were also stained with DAPI and viewed with an 104 

epifluorescence microscope to check for potential contamination by heterotrophic 105 

microorganisms. Contamination was not observed at any time point during the experiment. 106 

2.3 Extraction of metabolites 107 

Our initial experiments testing different extraction and mass spectrometry methods 108 

showed that extraction protocols appropriate for freshwater microorganisms such as a 109 

methanol/chloroform extraction (Winder et al., 2008) cannot be readily applied to marine 110 

organisms. The salt in seawater and the growth media is problematic for ESI mass spectrometry 111 

because salt suppresses the ionization of the organic molecules. For this reason, we were not able 112 

to analyze intracellular metabolites by direct infusion into the mass spectrometer. Rather, for 113 

both intracellular and extracellular metabolites, we opted for a reversed-phase LC/FT-MS 114 

method, in which salt co-elutes with the solvent front and is removed from compounds that are 115 

retained on the chromatography column. We adapted existing extraction and analysis methods to 116 

distinguish the organic compounds produced by T. pseudonana from the organic compounds in 117 
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the growth media. The methods for extracting intracellular and extracellular metabolites 118 

proceeded identically for the flasks with T. pseudonana and the cell-free controls. 119 

The intracellular metabolites were extracted using a method developed by Rabinowitz 120 

and Kimball (2007). Briefly, 1.5 ml samples were centrifuged at 16,000 x g at 4ºC for 30 minutes 121 

and the supernatant discarded. The resulting cell pellet was extracted three times with ice-cold 122 

extraction solvent (acetonitrile:methanol:water with 0.1 M formic acid, 40:40:20). The combined 123 

extracts were neutralized with 0.1 M ammonium hydroxide, dried in a vacufuge, and then re-124 

dissolved in 1 mL of 90:10 (v/v) water:acetonitrile for analysis on the mass spectrometer. 125 

Prior to sampling the extracellular metabolites, the cells were removed by gentle vacuum 126 

filtration through 0.2 µm Omnipore filters (hydrophilic PTFE membranes, Millipore). Barofsky  127 

et al. (2009) have observed filtration may release intracellular metabolites into the 128 

exometabolome, and this potential bias must be considered in the discussion of our results. The 129 

acidified filtrate was extracted using solid phase extraction with PPL cartridges (Varian Bond 130 

Elut PPL cartridges) as previously described (Dittmar et al., 2008). After eluting with methanol, 131 

the extracts were dried in a vacufuge, and then re-dissolved in 1 mL 90:10 water:acetonitrile 132 

prior to analysis.  133 

We quantified the extraction efficiency of the solid phase extraction resin in the 134 

following manner. The water:acetonitrile solution was dried completely using a vacufuge and re-135 

dissolved in MilliQ water. The extract was then added to MilliQ water that had been acidified 136 

with hydrochloric acid and analyzed on a Shimadzu TOC-VCSH total organic carbon analyzer as 137 

described in section 2.2. The carbon concentration from the extract was compared to the 138 

concentration of dissolved organic carbon in the filtrate to calculate the percent of organic carbon 139 

retained by the PPL cartridges. 140 
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2.4 Analysis of metabolites 141 

All metabolomics analyses were conducted using liquid chromatography (LC) coupled by 142 

electrospray ionization to a hybrid linear ion trap - Fourier-transform ion cyclotron resonance 143 

(FT-ICR) mass spectrometer (7T LTQ FT Ultra, Thermo Scientific). Samples were stored at 144 

-20ºC until mass spectrometric analysis. Analysis of the extracts was conducted within 48 hours 145 

of sample processing, except for the extracts from day three which were analyzed six days after 146 

sample processing. LC separation was performed on a Synergi Fusion reversed-phase column 147 

using a binary gradient with solvent A being water with 0.1% formic acid and solvent B being 148 

acetonitrile with 0.1% formic acid. Samples were eluted at 250 µl min-1 with the following 149 

gradient: hold at 5% B for 0-2 min, ramp from 5 to 65% B between 2 and 20 min, ramp from 65 150 

to 100% B between 20 and 25 min, hold at 100% B from 25-32 min, and then ramp back to 5% 151 

B between 32 and 32.5 min for re-equilibration (32.5-40 min). Both full MS and MS/MS data 152 

were collected. The MS scan was performed in the FT- ICR cell from m/z 100-1000 at 100,000 153 

resolving power (defined at 400 m/z). In parallel to the FT acquisition, MS/MS scans were 154 

collected at nominal mass resolution in the ion trap from the two features with the highest peak 155 

intensities in each scan. Separate autosampler injections were made for analysis in positive and 156 

negative ion modes. 157 

Electrospray and mass spectrometry conditions were initially optimized by infusing a 158 

mixture of metabolite standards in positive and negative ion modes. The list of compounds 159 

within this solution and sample spectra are given in Fig.S1. The majority of these standards 160 

preferentially ionize in either positive or negative ion mode. The LTQ FT Ultra was also 161 

externally calibrated weekly using a standard mixture of caffeine (Sigma Aldrich), L-methionyl-162 

arginyl-phenylalanyl-alanine acetate (MRFA) (Sigma Aldrich), Ultramark 1621 (Alfa Aesar), 163 
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acetic acid (Sigma Aldrich), sodium dodecyl sulfate (Sigma Aldrich), and sodium taurocholate 164 

(Sigma Aldrich). The instrument has a mass accuracy of < 2 ppm after external calibration. 165 

2.5 Processing of mass spectral data and feature identification 166 

Data were collected as XCalibur RAW files which were converted to mzXML files using 167 

the msConvert tool within ProteoWizard (Chambers et al., 2012). Features were extracted from 168 

the LC-MS data using XCMS (Smith et al., 2006), where a feature is defined as a unique 169 

combination of a mass-to-charge (m/z) ratio and a retention time. Peak finding was performed 170 

with the centWave algorithm (Tautenhahn et al., 2008), and only peaks that fit a Gaussian shape 171 

were retained. Features were aligned across samples based on retention time and m/z value using 172 

the group.nearest function in XCMS; fillPeaks was used to reconsider features missed in the 173 

initial peak finding steps. CAMERA was used (1) to find compounds differing by adduct ion and 174 

stable isotope composition (Kuhl et al., 2012) and (2) to extract the intensities and m/z values for 175 

the associated MS/MS spectra. Finally, the list of features with their retention time, m/z value, 176 

and intensity from the extracted ion chromatographs (EIC peak heights) were exported to 177 

MATLAB for further processing. Positive and negative ion mode data were processed as 178 

separate datasets in XCMS and MATLAB. 179 

In order to compare the data from the LC-based analysis with analyses generally done for 180 

direct infusion ESI FT-ICR MS data, we calculated the elemental formulas for the m/z values 181 

from the mzXML files processed by XCMS. We used the Compound Identification Algorithm 182 

developed by Kujawinski and colleagues (Kujawinski and Behn, 2006; Kujawinski et al., 2009) 183 

with a formula error of 1 ppm, and a relationship error of 20 ppm. The mass limit above which 184 

elemental formulas were assigned only by functional group relationships was 500 Da. Elements 185 

considered are C, H, O, N, S, and P. These elemental formulas were then divided into compound 186 
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classes that have been defined based on elemental ratios as approximated from data within 187 

Hedges and Kim et al. (Hedges, 1990; Kim et al., 2003). 188 

  Several databases and in silico tools were consulted in order to make putative 189 

identifications of select features from the untargeted metabolomics data. The databases included 190 

the Madison Metabolomics Consortium Database (MMCD, Cui et al., 2008), METLIN (Smith et 191 

al., 2005), and to a lesser extent MassBank (Horai et al., 2010), PubChem, and KEGG. The 192 

database searches described in the present project allowed a 2 ppm window between the 193 

measured and the database (calculated) m/z values. 194 

2.6 Statistical analysis 195 

Non-metric multidimensional scaling (NMS) (Kruskal, 1964; Mather, 1976) was used to 196 

analyze variability in metabolite composition. For this analysis, only the compounds that were 197 

not found in the controls were considered; the list was not pruned to remove isotopologues or 198 

adducts. Differences between individual samples were calculated based on the presence or 199 

absence of features with the Bray-Curtis distance measure using the Fathom toolbox (D.L. Jones, 200 

pers. comm.). The statistics toolbox in MATLAB was used to run the NMS analyses. The 201 

dimensionality of the data set was assessed by comparing 40 runs with real data to 50 runs with 202 

randomized data. Additional axes were considered if the addition of the axis resulted in a 203 

significant improvement over the randomized data (at p ≤ 0.05) and the reduction in stress was 204 

greater than 0.05. Stress is a metric of goodness of fit in NMS data, and thus large reductions in 205 

stress indicate that the additional axis significantly improved the presentation of the data. The 206 

proportion of variation represented by each axis was assessed by using a Mantel test to calculate 207 

the coefficient of determination (r2) between distance in the ordination space and distance in the 208 

original space. 209 
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Model I regressions were used to quantify changes in EIC peak heights during the 210 

experiment. The non-parametric Spearman’s rank correlation implemented in MATLAB was 211 

used to test changes in compound classes, cell abundance, TOC concentration, and inorganic 212 

nitrogen concentrations during the experiment.  213 

3 Results and Discussion 214 

3.1 Using metabolomics to assess the impact of an organism on its chemical 215 

environment 216 

Metabolomics seeks to describe and quantify metabolites produced by organisms in 217 

response to their chemical microenvironment (Patti et al., 2012). To address this goal for the 218 

centric diatom, T. pseudonana, we analyzed our untargeted metabolomics data in two ways. 219 

First, we consider the pattern of shared metabolites in order to examine the similarities (or 220 

differences) between samples or along a time series. These comparisons do not require 221 

identification of unknown compounds; rather all detected intracellular and extracellular 222 

metabolites can be compared over time. Second, the list of m/z values was mined to obtain 223 

putative compound identifications. While there is still need for increased coverage of 224 

metabolomics databases (Kind et al., 2009), obtaining the identity of a compound greatly 225 

expands our ability to understand the chemical impact of microbes such as diatoms. For example, 226 

with a compound identification we can consider the environmental conditions that affect the 227 

concentration of a metabolite, describe the biochemical pathways in which it occurs, and 228 

examine the sources and sinks of this compound in the environment. This remains a major 229 

challenge in environmental metabolomics, and is one that cannot be achieved solely within the 230 

context of our work with T. pseudonana. In the following sections, we discuss the pattern of 231 
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compounds produced by T. pseudonana and then the compounds that we were able to putatively 232 

identify.  233 

3.2 Temporal patterns in T. pseudonana metabolites 234 

Over the course of the ten-day experiment, there were significant increases in the 235 

abundance of T. pseudonana and the concentration of total organic carbon concurrent with 236 

significant decreases in the inorganic nutrient concentrations (Spearman rank correlations, p-237 

values all <<0.0001, Fig. S2). The inoculum into the flasks with T. pseudonana resulted in the 238 

transfer of organic compounds into the flasks at the beginning of this experiment as is apparent 239 

in the higher total organic carbon concentrations observed at the first sampling point in the flasks 240 

with T. pseudonana compared to the cell-free controls (Fig. S2). The cell-free controls did not 241 

show statistically significant changes over time in cell abundance, TOC, or inorganic nutrient 242 

concentrations (Spearman rank correlations, p-values > 0.05).  243 

We use two measures to compare our extracellular extracts with previous research on 244 

dissolved organic matter. First, we consider the fraction of dissolved organic carbon that was 245 

recovered with solid phase extraction. We recovered between 14 and 41% of the organic 246 

compounds with the PPL cartridges, with increased extraction efficiencies at the later growth 247 

stages of the experiment (Fig. 1). By comparison, Becker et al. (2014) recovered between 2 and 248 

24% of dissolved organic carbon from their phytoplankton cultures, with variability in the 249 

extraction efficiency correlated to phytoplankton phylogeny. Both studies observe efficiencies 250 

below the 40-60% extraction efficiency measured by Dittmar et al. (2008) for water samples 251 

from marine and estuarine sites. Second, m/z values from ultrahigh resolution mass spectrometry 252 

data have previously been sorted into compound classes based on their elemental ratios (e.g., 253 

Bhatia et al., 2010; Minor et al., 2012). Using this approach, the DOM from T. pseudonana 254 
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contains primarily protein-like, condensed hydrocarbon-like, and lipid-like compounds (Fig. 2); 255 

with lignin-like and carbohydrate-like compounds comprising less than 1% of the assigned 256 

elemental formulas. However, only a small fraction of the DOM could be sorted into compound 257 

classes based on elemental formulas. The proteins, hydrocarbons, and lipids from the positive ion 258 

mode data showed statistically significant increases with time; in negative ion mode, only the 259 

correlation between proteins and sampling time was statistically significant (Spearman’s rho, p-260 

values <0.05). While these compound classes do not distinguish between structural isomers, they 261 

provide a means to compare the composition of different samples. Here, we show that increases 262 

in T. pseudonana abundance are linked to higher numbers of protein-like, condensed 263 

hydrocarbon-like, and lipid-like compounds. These broad classifications, however, also highlight 264 

the limitations of analyses based on elemental formulas, which cannot distinguish between 265 

structural isomers. As we will note in section 3.4, we observed instances of the same m/z value at 266 

different retention times, confirming the presence of structural isomers in this dataset. 267 

The number of features detected within the sample extracts analyzed with our untargeted 268 

metabolomics method showed slight variability during the course of the experiment (Table 1, 269 

Fig. S3). The data summarized in Table 1 includes all unique combinations of an m/z value and a 270 

retention time; specific compounds will appear in this list multiple times if they were observed 271 

with different adducts (e.g., M-H+ or M-Na+) or with 13C substitutions (i.e., isotopologues). 272 

Almost 75% of all features were observed only in the treatments with T. pseudonana and were 273 

absent in the cell-free controls. The features found both in the treatments with T. pseudonana and 274 

in the cell-free controls were not analyzed further.  275 

Throughout the experiment, we detected more features in the exometabolome compared 276 

to the endometabolome in both positive and negative ion modes (Fig. S3). There are several 277 
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factors that contribute to this observation. First, a smaller volume of sample was processed to 278 

obtain the intracellular metabolites. Thus, metabolites present at lower concentrations may not 279 

have sufficient signal strength to be detected by the mass spectrometer. Second, methodological 280 

constraints required us to use a different extraction method to assess the endometabolome 281 

compared to the exometabolome. This might have affected the number and type of features 282 

retained and likely impacted the patterns of features observed within the intracellular and 283 

extracellular metabolite pools. The primary goal of extraction methods for both intra- and 284 

extracellular metabolites is the capture of the broadest suite of compounds at sufficient 285 

concentration and with minimal salt interference. Due to the different sample matrices, this 286 

requires two different extraction methods. In the intracellular methods, simple cell lysis liberates 287 

a diverse pool of compounds and salt removal occurs during the LC step. For extracellular 288 

methods, compounds must be concentrated from the saltwater media, requiring the use of solid-289 

phase extraction resins. De-salting occurs at the same time as extraction in this method. The 290 

method for the intracellular metabolites is optimal for low molecular weight compounds that are 291 

more polar compared to the slightly less polar, moderate molecular weight compounds which are 292 

captured by the PPL solid-phase extraction cartridges used for the extracellular metabolites. 293 

Nevertheless the boundaries of polarity and molecular weight are not exclusive to each method, 294 

and we expected overlap in the compounds observed in the intracellular and extracellular 295 

metabolites extracted from T. pseudonana. Yet, only a small number of compounds  (9 in 296 

negative ion mode and 35 in positive ion mode) from T. pseudonana were observed in both the 297 

intracellular and extracellular metabolites (Table 1). Whether or not this was due to changes in 298 

the metabolites after they were exuded from the cells cannot be determined based on our current 299 

data. Previous research has noted that filtration of diatom cells may cause intracellular 300 
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metabolites to leak from cells which would bias characterization of extracellular metabolites 301 

(Barofsky et al., 2009). Of the limited research that has been done into metabolites of marine 302 

microorganisms, only two studies that we are aware of have attempted to examine both 303 

intracellular and extracellular metabolites (Baran et al., 2010; Rosselló-Mora et al., 2008), and 304 

neither of these studies assessed the overlap between the intracellular and extracellular 305 

metabolites in their organisms.  306 

Changes in the extracted-ion-current (EIC) peak heights can be a semi-quantitative 307 

measure of the amount of a feature within a sample. EIC peak heights may vary because of (1) 308 

variability in the mass spectrometer, (2) ionization efficiency of the different compounds, and (3) 309 

the concentration of a compound within a sample. By definition, the present project took a finite 310 

amount of time and we opted to analyze the samples a constant length of time after extraction in 311 

order to minimize changes to the extract. This precludes analysis of the samples in a randomized 312 

fashion, which would reduce the impact of instrument variability. An alternative option is to 313 

group the sample extractions required for one project. This allows a pooled sample to be created 314 

which can constrain differences in EIC peak heights that are due to analytical variability (Dunn 315 

et al., 2011). Almost 9,000 features were observed in positive and negative ion mode and absent 316 

from the cell-free controls (Table 1, Fig. S3). A fraction of these features showed significant 317 

increases or decreases in EIC peak heights over the experiment (Table S1). More of the 318 

extracellular metabolites showed increases in EIC peak heights over time compared to the 319 

intracellular metabolites in both positive and negative ion modes (Table S1). Furthermore, a 320 

higher percentage of features decreased over time in the extracellular compared to the 321 

intracellular metabolites (Table S1). Such temporal variability over different growth stages in 322 

extracellular metabolites released by T. pseudonana has also been noted by Barofsky et al. 323 
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(2009). Yet, when all samples over the six sampling days were considered, the majority of 324 

features did not exhibit statistically significant changes in EIC peak heights during the 325 

experiment. The metabolites not exhibiting temporal variability could be compounds replenished 326 

by T. pseudonana at a constant rate or compounds that are not affected by changes in the growth 327 

conditions of the present project. While we cannot exclude the possibility that a subset of these 328 

metabolites were transferred with the inoculum at the beginning of the experiment, these features 329 

were absent from the controls and therefore not present in the media used to grow T. 330 

pseudonana. 331 

3.3 Statistical analysis of occurrence patterns of metabolites 332 

We used NMS to analyze the pattern of features found in the intracellular and 333 

extracellular metabolites. In positive ion mode, the NMS calculation (Fig. 3A and B) resulted in 334 

an ordination with a final stress of 0.13 and r2 = 0.89 with more variability on axis one than on 335 

axis two (r2 on axis 1 = 0.66, r2 on axis 2 = 0.32). In negative ion mode, the NMS calculation 336 

(Fig. 3C and D) resulted in an ordination with a final stress of 0.12 and r2 = 0.78 with more 337 

variability on axis one than on axis two (r2 on axis 1 = 0.57, r2 on axis 2 = 0.20). In both positive 338 

and negative ion modes, the NMS revealed a larger variability in the intracellular metabolites 339 

compared to the variability in the extracellular metabolites. In negative ion mode, this pattern 340 

was predominantly due to differences observed in one replicate on days 1, 8, and 10. This 341 

variability between replicates sampled on days 1, 8, and 10 was also evident in positive ion 342 

mode. We do not have an explanation for this inter-replicate variability for select days of the 343 

experiment, but the fact that it was observed in both positive and negative ion modes suggests 344 

either variability in biological activity or sample processing, and not analytical variability. The 345 

positive ion mode data exhibited greater differences among samples collected at all of the time 346 
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points. By day 7 of the experiment, the NMS revealed small changes in the composition of 347 

extracellular metabolites as shown by the tight clustering of symbols for days 7, 8, and 10 in Fig. 348 

3. This indicates that the composition of metabolites produced by T. pseudonana at the 349 

conclusion of the experiment was less dynamic and fewer new compounds were being produced 350 

compared to the more variable composition of metabolites observed during exponential growth. 351 

3.4 Annotating metabolites from T. pseudonana  352 

A major challenge with an untargeted metabolomics assessment is the task of fully 353 

identifying the tens of thousands of features detected within a single dataset (Daly et al., 2014; 354 

Schymanski and Neumann, 2013). In the ideal case, these identifications are validated using 355 

authentic standards and multiple analytical methods coupled to iterative comparisons to different 356 

databases (Sumner et al., 2007). This labor-intensive process currently renders identification of 357 

the ~18,000 features found in the present project (Table 1) infeasible. Therefore, we culled our 358 

dataset to focus attention on those compounds that would have the highest potential for 359 

significant interest. To address our scientific goal of identifying compounds produced by T. 360 

pseudonana and subsequently released into the environment, we focused our attention on 361 

features detected in both intracellular and extracellular extracts. As described in the methods 362 

section, we required a feature (a) to be absent from the cell-free controls, and additionally 363 

required features (b) to be present in both replicates with T. pseudonana in order to increase our 364 

confidence in the observation of each feature, and (c) to be present at more than one time point in 365 

order to avoid considering transient features within the dataset. In the end, nine compounds in 366 

negative ion mode and 35 compounds in positive ion mode (Table 1) met these stringent criteria 367 

and we attempted to identify them based on exact mass and MS/MS data. 368 
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We used an iterative process to annotate and putatively identify the compounds, with 369 

comparisons to multiple databases. We used a classification scheme proposed by Sumner et al. 370 

(2007) to rate the strength of our putative metabolite identifications (Table 2). The strongest 371 

identifications, level 1, are those for which we have an authentic standard and have analyzed it 372 

on our mass spectrometer. Level 2 identifications are putatively annotated without chemical 373 

reference standards, but are based on spectral similarities with data from public or commercial 374 

libraries. Compounds with only a match based on m/z value are rated as level 3 classifications 375 

within the Sumner et al. (2007) format. Finally, level 4 classifications are unknown compounds. 376 

Searches based on comparisons of exact mass and the KEGG database have been previously 377 

used to help characterize organic compounds (Longnecker and Kujawinski, 2011; Romano et al., 378 

2014; Suhre and Schmitt-Kopplin, 2008). Here, our first step in identification was comparison of 379 

exact mass values with masses of metabolites present in METLIN. In addition, for features with 380 

MS/MS fragmentation in our experiment, we compared our MS/MS spectra with METLIN 381 

database spectra to assign a putative identification to the feature. However, not all compounds in 382 

the METLIN database have associated MS/MS spectra. When no MS/MS data or matches to the 383 

METLIN database were available for a selected feature, we consulted the MMCD database. 384 

Finally, four of the features in positive ion mode were eliminated from consideration because the 385 

features had the same m/z value with different retention times, suggesting the presence of 386 

structural isomers. Identifying these features would require analysis of authentic standards of 387 

possible isomers to establish appropriate retention times and MS/MS data for comparison with 388 

our experimental dataset. In the following sections we discuss the implications of the compounds 389 

we were able to putatively identify (Table 2, Table S2).  390 
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3.5 Observation of compounds previously associated with T. pseudonana 391 

Chitin is produced by a variety of marine organisms, and crustacean shells are the largest 392 

pool of chitin in the marine environment. After cellulose, chitin is the second most abundant 393 

biopolymer on earth yet its low levels in marine sediments imply that it is readily recycled within 394 

marine ecosystems despite its poor aqueous solubility (Gooday, 1990; Jeuniaux and Voss-395 

Foucart, 1991). In T. pseudonana, the chitin is found in the cell wall (Brunner et al., 2009; 396 

Durkin et al., 2009) and flexible chitin fibers extend through the silica channels surrounding the 397 

cell (Hildebrand et al., 2009). In the present project, we observed both tri-N-acetylchitotriose 398 

(Fig. 4A) and chitobiose, which corroborates previous observations from culture experiments 399 

with T. pseudonana (Smucker and Dawson, 1986). The extracted ion chromatogram of tri-N-400 

acetylchitotriose is shown in Fig. S4. The putative identification of tri-N-acetylchitotriose was 401 

well supported because the METLIN database provided a match for its exact mass and a match 402 

for the measured MS/MS spectra (Fig. 4B). Furthermore, the retention time for an authentic 403 

standard matched the retention time measured in the culture experiment. The T. pseudonana 404 

genome contains the synthetic pathway for chitin and 22 putative chitinases, which have a 405 

potential for chitin degradation (Armbrust et al., 2004). One hypothesis is that T. pseudonana 406 

degrades chitin to alter its sinking rate or to change the thickness of its cell wall to modulate the 407 

influx of compounds (Armbrust et al., 2004). An alternate hypothesis is that T. pseudonana does 408 

not express its chitinases for chitin degradation and that tri-N-acetylchitotriose and chitobiose are 409 

lost from chitin fibers during cellular growth. This hypothesis is consistent with culture 410 

experiments that did not reveal measurable levels of chitinase activity under different growth 411 

conditions (Štrojsová and Dyhrman, 2008). However, this would not explain the presence of 412 

multiple chitinases within the T. pseudonana genome. While we cannot distinguish between 413 
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these two hypotheses with the present dataset, the observed increases in tri-N-acetylchitotriose 414 

and possibly chitobiose suggest that the metabolic potential for chitin degradation in the genome 415 

could be realized during the growth of T. pseudonana. This is a good example of a case where 416 

genomic data are helpful in describing potential microbial metabolisms, yet metabolomics data 417 

are required to quantify the actual metabolic processes active within marine environments. 418 

As the experiment progressed, Thalassiosira retained increasing amounts of intracellular 419 

dimethylsulfoniopropionate (DMSP; Fig. S5). DMSP was identified by exact m/z matches in the 420 

MMCD database and through analysis of an authentic standard. The identification of DMSP also 421 

indicates that we were able to distinguish chemical compounds that are important in marine 422 

environments, even with an untargeted metabolomics approach. DMSP is an organic sulfur 423 

compound that can act as an osmolyte for marine phytoplankton (Kirst, 1990). In addition, 424 

internal DMSP might scavenge potentially damaging reactive oxygen species or serve as a sink 425 

for carbon during periods of unbalanced growth (Stefels et al., 2007). In T. pseudonana, the 426 

production of DMSP is well-established (Keller et al., 1999) and increased amounts of DMSP 427 

are produced when the cells are nitrogen-limited (Bromke et al., 2013; Bucciarelli and Sunda, 428 

2003; Franklin et al., 2012). In the present project, we did not add DSMP to the media and we 429 

did not detect DMSP in the cell-free controls. Yet, the amount of DMSP inside the cells 430 

increased during the experiment which might reflect T. pseudonana’s response to decreasing 431 

nitrogen availability, although the concentration of inorganic nitrogen always remained above 432 

600 μM during the experiment (Fig. S2). While DMSP was observed at low levels in the external 433 

metabolites, DMSP is not efficiently recovered by PPL cartridges and thus its detection in this 434 

pool was likely underestimated significantly (W. Johnson, personal communication). The 435 

amount of DMSP produced by different species of phytoplankton varies over several orders of 436 
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magnitude, with diatoms having lower DMSP-to-carbon ratios than other phytoplankton (Stefels 437 

et al., 2007). However, our observation and the recent observations by Franklin et al. (2012) 438 

indicate that Thalassiosira may be important in the production of DMSP and therefore plays a 439 

role within the marine sulfur cycle. 440 

3.6 Identification of compounds not previously associated with T. pseudonana 441 

Compound identification is a major challenge in environmental metabolomics. In the 442 

following discussion, we present putatively annotated features, but recognize that there is still 443 

uncertainty associated with these identifications. Thus, a definitive identification will require 444 

additional verification before we can hypothesize as to the role of these compounds within the 445 

metabolism of T. pseudonana. Once we have confirmed the identity of these compounds, we can 446 

develop an appropriate quantitative assay and conduct laboratory experiments to address 447 

hypotheses about the importance of these compounds in the chemical ecology of T. pseudonana. 448 

The first compound is bryotoxin A, which could only be identified with exact m/z 449 

matches in the MMCD database (Figure S6). While we collected an associated MS/MS 450 

spectrum, there were no corresponding listings in METLIN or MassBank which could help 451 

confirm the structure and identification. This compound is potentially interesting because it has 452 

not previously been observed in marine systems and studies on its toxicity are limited to 453 

experiments with cattle (McKenzie et al., 1987; McKenzie et al., 1989).  454 

The second compound is a complex organic compound containing both iodine and 455 

chlorine. The putative elemental formula for this feature is C22H22Cl2I2N2O7 and we observed the 456 

feature primarily in the intracellular metabolites (Fig. 5). We observed the m/z values of both 457 

35Cl- and 37Cl-isotopologues at the same retention time (Fig. S7), confirming the presence of 458 

chlorine. Macroalgae are the primary source of halogenated organic compounds in marine 459 
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ecosystems (Carpenter et al., 2000; Gschwend et al., 1985; Schall et al., 1994) and T. 460 

pseudonana releases CH3I, a simple organic halogenated compound (Hughes et al., 2006). Yet, 461 

while T. pseudonana assimilates both iodide and iodate (de la Cuesta and Manley, 2009), to our 462 

knowledge this is the first observation that T. pseudonana may produce a complex organic 463 

compound containing both iodine and chlorine. In marine systems, between 40 and 90% of all 464 

soluble iodine-containing compounds are organic compounds (Gilfedder et al., 2008; Lai et al., 465 

2011; Wong and Cheng, 1998), which play an important role in chemical ecology (Vanelslander 466 

et al., 2012) and marine atmospheric chemistry (O'Dowd et al., 2002; Saiz-Lopez et al., 2011).  467 

We also observed over one hundred features that were tentatively identified as peptides 468 

(Table S3), mostly tripeptides (e.g., Arg-Tyr-Tyr) and a smaller number of dipeptides (e.g, Ala-469 

Pro). Matches to m/z values in the METLIN database provide insight into the possible 470 

combinations of amino acids that compose the peptides we observed. However, peptide 471 

identification is challenging because (1) the amino acid sequence cannot be determined solely 472 

based on exact mass and (2) there are structural isomers among the twenty possible amino acids 473 

(He et al., 2004). While we will require additional analyses to identify the peptides we observed, 474 

the prevalence of m/z values matching peptides is noteworthy even without a putative 475 

identification of the amino acid sequences. The peptides were primarily present in the external 476 

metabolites, and were not always simultaneously present in the intracellular metabolite pool. 477 

Furthermore, plots of the peptides’ EIC peak heights over time revealed statistically significant 478 

increases in peak heights (Pearson correlation coefficients with p < 0.05) for the majority of the 479 

peptides (Table S3). This suggests that most of the peptides were increasing in concentration 480 

over the course of the experiment. 481 
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The unexpected observation of a large number of different peptides raises the question as 482 

to why T. pseudonana releases so many different peptides and whether the peptides would be 483 

readily assimilated by marine heterotrophic microorganisms. Free amino acids have been 484 

quantified inside and outside of the cells in Skeletonema costatum cultures and they represented a 485 

minor fraction (<5%) of the released dissolved organic carbon (Granum et al., 2002). More 486 

recently, a metabolomic investigation of Synechococcus revealed the presence of amino acids 487 

and dipeptides both inside the cells and in the growth media (Baran et al., 2010). Thus, the 488 

peptides we observe during T. pseudonana growth may be a product of protein turnover within 489 

the cell which is subsequently released into the media. Dissolved peptides are easily hydrolyzed 490 

to their constituent amino acids and then are rapidly consumed by heterotrophic microorganisms 491 

(Hollibaugh and Azam, 1983; Kirchman and Hodson, 1986). As a result, any peptides released 492 

by T. pseudonana are likely to have a short residence time in the marine environment. Further 493 

work is needed to assess whether the peptides observed here will be consumed at different rates 494 

depending on the carbon, nitrogen, and sulfur demands of the in situ heterotrophic bacterial 495 

community. 496 

 Metabolomics lags far behind other ‘omics’ investigations and, until recently, 497 

metabolomics research has focused on the development of laboratory methods, analytical 498 

methods, and computational tools. In the present project we applied these emerging tools to 499 

characterize the organic compounds that T. pseudonana may release into the environment. 500 

Through this analysis we putatively identified compounds not previously associated with T. 501 

pseudonana metabolism. While there have been only limited metabolomic investigations into the 502 

impact of marine microorganisms on their chemical environment, the continued development of 503 
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computational tools and establishment of new databases will be crucial in facilitating the 504 

comparison of metabolites across organisms and ecosystems. 505 
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Figure Legends 516 

Fig. 1. Extraction efficiency for the solid phase extraction of extracellular metabolites during the 517 

course of the experiment. The extraction efficiencies for the treatments with T. pseudonana is the 518 

percentage of the dissolved organic carbon retained by the PPL cartridges as a fraction of the 519 

measured dissolved organic carbon in the filtrate.  520 

Fig. 2. The number of (A) protein-like, (B) condensed hydrocarbon-like, and (C) lipid-like 521 

compounds in the samples with T. pseudonana over the course of the experiment. The features 522 

within the cell-free controls were removed from the dataset prior to calculating the elemental 523 

formulas needed to define features based on their elemental ratios. 524 

Fig. 3. NMS analysis based on presence or absence of features showing the differences in the 525 

composition of organic matter analyzed in (A and B) positive ion mode and (C and D) negative 526 

ion mode. The panels contain the same data coded differently to highlight (A and C) the 527 

differences between intracellular and extracellular metabolites or (B and D) the sampling time 528 

for the intracellular and extracellular metabolites. 529 

Fig. 4. Changes in the (A) EIC peak height of a feature putatively identified as tri-N-530 

acetylchitotriose. Data from both replicates with T. pseudonana are shown in the figure. The 531 

identification was based on m/z value and (B) comparison of the MS/MS spectrum with data 532 

available in METLIN. The structure of the compound is given within panel (A). The MS/MS 533 

spectrum shown in (B) is that from our unknown feature and the table lists the m/z values and 534 

relative intensities given in METLIN. 535 

Fig. 5. The organic compound potentially containing both chlorine and iodine was (A) observed 536 

in negative ion mode as [M - 2H + Na]-. The structure of the compound as shown in PubChem is 537 

given in (B). 538 
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Longnecker, Kido Soule, Kujawinski 539 
Fig. 1 540 
  541 
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Longnecker, Kido Soule, Kujawinski 542 
Fig. 2  543 
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Longnecker, Kido Soule, Kujawinski 544 

Fig. 3  545 
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Longnecker, Kido Soule, Kujawinski 546 

Fig. 4  547 
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 548 
Longnecker, Kido Soule, Kujawinski 549 

Fig. 5 550 

 551 
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Table 1. Summary of extracellular and intracellular metabolites exuded or retained by T. 553 

pseudonana, as collected by LC/FT-MS in either positive or negative ion mode. Each feature is a 554 

unique combination of an m/z value and a retention time. 555 

 Negative Positive 

Total # of unique features  5484 12443 

Number (and percent) of features remaining after deleting 
features found in the controls 

4015 
(73%) 

9042 
(73%) 

# of features in the extracellular metabolites§ 1630 2203 

# of features in the intracellular metabolites§ 1458 3685 

# of features found in both the intracellular and extracellular 
metabolites† 9 35 

 556 

§Features present in both replicates of either the extracellular or intracellular metabolites. 557 

†Each feature had to be present in both replicates of the intracellular and extracellular metabolites 558 

and present at more than one time point during the experiment. 559 

  560 
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Table 2. Details on the compounds putatively identified in the experiments with T. pseudonana. 561 

The table includes the information on the measured m/z value and the ionization mode. 562 

Additional details on each compound are presented in Table S2.  Identification level is described 563 

in the text and follows the convention proposed by Sumner et al. (2007).  564 

Putative annotation Measured 
mass/charge 

Ionization 
mode 

Reference 
numbers 

Identification 
level 

Tri-N-acetylchitotriose 628.255600 Positive PubChem CID 
444514 

1 

Chitobiose 425.176513 Positive KEGG C01674 2 

Dimethylsulfoniopropionate 
(DMSP) 135.047394 Positive KEGG C04022 1 

Bryotoxin A 619.275800 Positive KEGG C08853 3 

Organo-iodine compound 770.865479 Negative PubChem CID 
11535056 

3 

 565 

  566 
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Dissolved organic matter produced by Thalassiosira pseudonana 
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Table S1. Percent of features with changes in EIC peak heights over time for features found in 

the samples and absent from the cell-free controls. Only statistically-significant (Model I 

regressions with p ≤0.05) increases or decreases are included in the table. The total # of features 

is also shown in Table 1 and is the number of features present in both replicates of either the 

extracellular or intracellular metabolite samples and absent from the cell-free controls. 

 Positive Negative 
 Intracellular Extracellular Intracellular Extracellular 

% features increased  4%  67%  5%  25% 

% features decreased  7% 13%  6% 8% 

Total # features 3685 2203 1458 1630 

 



 

Page S3 

 

Table S2. Summary of the features of interest which could be putatively identified. The table indicates whether the features were detected in positive 

(pos) or negative (neg) ion mode, and what charged ion was detected. Error indicates the absolute difference between the observed m/z value and the 

calculated m/z value. MS/MS spectra were available for some of the features, and the comments include additional information about each feature. 

Reference numbers can be used to find additional information about each compound in the indicated database.  

Putative annotation 
Elemental 
Formula  

(exact mass) 

Ion 
mode 

Detected 
as? 

Error 
(ppm) 

MS/MS
? Reference numbers Comments 

Tri-N-acetylchitotriose 
C24H41N3O16 

(627.248682) 
Pos [M+H]+ 0.57 Yes  PubChem CID 444514 

1 match at METLIN with 
MS/MS data corresponding 
to the observed MS/MS 
data 

Chitobiose 
C16H28N2O11 

(424.169310) 
Pos [M+H]+ 0.17 No KEGG C01674 Same retention time as tri-

N-acetylchitotriose 

Dimethylsulfoniopropionate 
(DMSP) 

C5H10O2S 

(134.040150) 
Pos [M+H]+ 0.24 Yes KEGG C04022 1 match at MMCD; no 

match at METLIN 

Bryotoxin A 
C32H42O12 

(618.267627) 
Pos [M+H]+ 1.45 No KEGG C08853 1 match at MMCD; no 

match at METLIN 

Organo-iodine compound* 
C22H22Cl2I2N2O7 

(749.889361) 
Neg 

[M-2H+Na]- 

 

1.88 

 
No PubChem CID 11535056 

No matches at MMCD or 
METLIN; found isotopes 
for 37Cl 
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* The full name for the organo-iodine compound is: Methyl (2R)-2-[[(2R)-2-(3,5-dichloro-4-hydroxyphenyl)-2-[(2-methylpropan-2-

yl)oxycarbonylamino]acetyl]amino]-2-(4-hydroxy-3,5-diiodophenyl)acetate
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Table S3. Summary of peptide data from the intracellular and extracellular metabolites analyzed 

in positive or negative ion mode. Both dipeptides and tripeptides were observed. Most of the 

peptides showed increases in EIC peak heights over the course of the experiment. 

 Positive Negative 
 Intracellular Extracellular Intracellular Extracellular 

Total # of peptide matches  11 88 2 26 
# compounds increased during 
experiment  6 68 2 23 

# compounds decreased during 
experiment 5 20 0 3 
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Fig. S1. We used a mixture of metabolites to optimize the LC/FT-ICR-MS parameters. This 
solution consisted of L-methionine, L-proline, L-arginine, L-glutamic acid, L-glutamine, L-
threonine, caffeine, n-acetyl D-glucosamine, riboflavin, biotin, thymidine, NAD, succinic acid, 
malic acid, orotic acid, phosphoenolpyruvate, citric acid, glucose 6-phosphate, fructose 1,6-
bisphosphate, and sodium taurocholate.  The total ion chromatograph is shown for (A) the 
analysis of the metabolite mix and a solvent blank (90:10 water:acetonitrile) in negative ion 
mode, (B) the analysis of the metabolite mixture and a solvent blank in positive ion mode. The 
text lists the metabolites (and retention time, in seconds) for each ionization mode.  
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Fig. S2. During the incubation period, there were increases in (A) the abundance of T. 

pseudonana and (B) the concentration of total organic carbon within the flasks. There were no 

changes in the cell-free controls over the experiment, nor was there evidence of contamination 

by heterotrophic bacterial cells. The approximately 200 μM of total organic carbon in the cell-

free controls is due to the presence of vitamins and EDTA that are required by T. pseudonana for 

cell growth.  (C) There was a decrease in the concentration of nitrate+nitrite in the flasks with T. 

pseudonana indicating the consumption of inorganic nutrients concurrent with increases in 

cellular abundance. Silicate and phosphate showed similar patterns in concentration (data not 

shown). 
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Fig. S3. The number of features (unique combinations of m/z value and retention time) for the 

extracellular and intracellular metabolites during the experiment from (A) positive ion mode and 

(B) negative ion mode. The points have been jiggered on the time axis to reduce overlap between 

sample points. A low number of features was observed in one of the extracellular metabolite 

samples at day 8 within the positive ion mode data. Inspection of the raw data revealed a 

problem with sample injection and this sample was not considered further.  
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Fig. S4 : Extracted ion chromatogram (EIC) for tri-N-acetylchitotriose which had a measured m/z 
value of 628.52260. XCMS was used to process the data files generated by the LC-FT system. 
The dark lines are from samples with T. pseudonana while the lighter lines are the cell-free 
controls. 
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Fig. S5. DMSP was putatively identified in positive ion mode in both the intracellular and 

extracellular metabolites. The analysis failed for one of the replicates on day 8, and that sample 

is not plotted on the figure. Note the scale difference in the EIC peak heights between the 

intracellular and extracellular metabolites. The structure of the compound is also shown. 
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 Fig. S6. A feature putatively annotated as bryotoxin A was observed in positive ion mode in 

both the intracellular and extracellular metabolites. Note the scale difference in the EIC peak 

heights between the intracellular and extracellular metabolites. The inset shows the structure of 

bryotoxin A, and the changes in EIC peak heights over the course of the experiment. 
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Fig. S7. EIC data for the organo-iodine compound (C22H22Cl2I2N2O7) observed in negative ion 
mode at (A) day zero and (B) day ten of the experiment. The data in green show the compound 
with two 35Cl molecules, while the data in orange is the EIC data for a feature that putatively has 
one 35Cl and one 37Cl. In the environment, chlorine molecules are 75% 35Cl and 25% 37Cl, and 
our data show the 35Cl organo-iodine compound had higher EIC peak heights supporting our 
putative identification of a compound containing chlorine. 
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