149 research outputs found

    A vision-based approach for surface roughness assessment at micro and nano scales

    Get PDF

    Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    Get PDF
    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system

    Planar Rayleigh scattering results in helium-air mixing experiments in a Mach-6 wind tunnel

    Get PDF
    Planar Rayleigh scattering measurements with an argon—fluoride excimer laser are performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach-6 facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross-sectional area (5 cm × 10 cm) of the flow field in the absence of clusters

    The Performance Study of Genetic Algorithm Approaches for Soft Tissue Parameters Estimation

    Get PDF

    An optimal parameter estimation method for soft tissue characterization

    Get PDF

    A constraint-based methodology for product design with virtual reality

    Get PDF
    This paper presents a constraint-based methodology for product design with advanced virtual reality technologies. A hierarchically structured and constraint-based data model is developed to support product design from features to parts and further to assemblies in a VR environment. Product design in the VR environment is performed in an intuitive manner through precise constraint-based manipulations. Constraint-based manipulations are accompanied with automatic constraint recognition and precise constraint satisfaction to establish constraints between objects, and are further realized by allowable motions for precise 3D interactions in the VR environment. The allowable motions are represented as a mathematical matrix and derived from constraints between objects by constraint solving. A procedure-based degrees-of-freedom combination approach is presented for 3D constraint solving. A rule-based constraint recognition engine is developed for both constraint-based manipulations and implicitly incorporating constraints into the VR environment. An intuitive method is presented for recognizing pairs of mating features between assembly components. Examples are presented to demonstrate the efficacy of the proposed methodology

    Demonstration of Imaging Flow Diagnostics Using Rayleigh Scattering in Langley 0.3-Meter Transonic Cryogenic Tunnel

    Get PDF
    The feasibility of using the Rayleigh scattering technique for molecular density imaging of the free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel has been experimentally demonstrated. The Rayleigh scattering was viewed with a near-backward geometry with a frequency-doubled output from a diode-pumped CW Nd:YAG laser and an intensified charge-coupled device camera. Measurements performed in the range of free-stream densities from 3 x 10(exp 25) to 24 x 10(exp 25) molecules/cu m indicate that the observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute signal levels agree (within approx. 30 percent) with the expected signal levels computed based on the well-known quantities of flow field density, Rayleigh scattering cross section for N2, solid angle of collection, transmission of the optics, and the independently calibrated camera sensitivity. These results show that the flow field in this facility is primarily molecular (i.e., not contaminated by clusters) and that Rayleigh scattering is a viable technique for quantitative nonintrusive diagnostics in this facility

    An inverse Prandtl–Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism

    Get PDF
    A modified Prandtl–Ishlinskii (P–I) hysteresis model is developed to form the feedforward controller for a 3-DOF flexure-based mechanism. To improve the control accuracy of the P–I hysteresis model, a hybrid structure that includes backlash operators, dead-zone operators and a cubic polynomial function is proposed. Both the rate-dependent hysteresis modeling and adaptive dead-zone thresholds selection method are investigated. System identification was used to obtain the parameters of the newly-developed hysteresis model. Closed-loop control was added to reduce the influence from external disturbances such as vibration and noise, leading to a combined feedforward/feedback control strategy. The cross-axis coupling motion of the 3-DOF flexure-based mechanism has been explored using the established controller. Accordingly, a decoupling feedforward/feedback controller is proposed and implemented to compensate the coupled motion of the moving platform. Experimental tests are reported to examine the tracking capability of the whole system and features of the controller. It is demonstrated that the proposed decoupling control methodology can distinctly reduce the coupling motion of the moving platform and thus improve the positioning accuracy and trajectory tracking capability
    • …
    corecore