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Abstract 

This paper adopts the concept of random weighting estimation to multi-sensor data fusion. It 

presents a new random weighting estimation methodology for optimal fusion of 

multi-dimensional position data. A multi-sensor observation model is constructed for 

multi-dimensional position. Based on this observation model, a random weighting estimation 

algorithm is developed to estimate position data from a single sensor. Using the random 

weighting estimations from each single sensor, an optimization theory is established for 

optimal fusion of multi-sensor position data. Experimental results demonstrate that the 

proposed methodology can effectively fuse multi-sensor dimensional position data, and the 

fusion accuracy is much higher than that of the Kalman fusion method. 

Keywords: random weighting estimation, multi-sensor system, data fusion, and 

multi-dimensional position data. 

 

1 Introduction  

Multi-sensor data fusion is a technique, which aims to combine data from multiple sensors to 

achieve improved accuracies and more specific inferences than could be achieved by using a 
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single sensor alone. Although there has been a significant amount of research reported in this 

area during the past twenty years, fusion of multi-sensor data is still a challenging problem [8, 

9, 17]. Currently, the commonly used methods such as Kalman filter [1, 2, 15, 16], Bayesian 

reasoning [3, 12, 19] and fuzzy logic theory [13, 14, 18] suffer from their own limitations in 

achieving optimal fusion. Such limitations include the dependence on a conditional probability 

distribution or fuzzy membership function, the unacceptable fusion results when observational 

evidences highly conflict with each other, the low real-time performance due to the use of too 

many state variables, and the low efficiency for fusion of multi-sensor information [8, 10, 11]. 

Random weighting is an emerging computational method in statistics, and has been used to 

solve different problems [4-7]. In comparison with the existing data fusion methods, such as 

the commonly used Kalman filter, this method has many advantages [4, 7, 20]. The random 

weighting method is simple in computation and suitable for large samples. It does not rely on 

the knowledge of the distribution of position parameters, and the estimation results are 

unbiased. It can also be used to calculate a statistical probability density function, since the 

resultant statistical distribution actually provides for a probability density function. 

Nevertheless, there has been little research to use random weighting estimation for 

multi-sensor data fusion. To the best of our knowledge, this is the first study focusing on 

multi-sensor data fusion by using random weighting estimation. 

By adopting the concept of random weighting estimation to multi-sensor data fusion, this paper 

presents a new random weighting estimation methodology for fusion of multi-dimensional 

position data. This methodology achieves the optimal fusion of multi-dimensional position data 

based on the random weighting estimations of observations from single sensors. It features a 
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multi-sensor observation model for multi-dimensional position, a random weighting estimation 

algorithm for estimation of single-sensor position data, and a random weighting estimation 

theory for optimal fusion of the data estimated from each single sensor. Experiments and 

comparison analysis have been conducted to comprehensively evaluate the performance of the 

proposed methodology for fusion of multi-dimensional position data. 

 

2 Random Weighting Estimation for Fusion of Multi-dimensional Position 

Data 

Assume that 1 2, , , nX X X  are the random variables of independent and identical distribution 

with common distribution function  F x , and the corresponding empirical distribution 

function is defined as   ( )
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2.1 Multi-sensor observation model for multi-dimensional position 

Suppose that a multi-sensor system consists of N sensors  NiSi 1, . The sampling result 

may be written as 

 

ik i i ikZ e        (2) 

 

where ikZ  represents the kth (1 ik n  ) observation value obtained from the ith sensor iS , 

  represents the true position parameter, and ( , 2)PR P     . i  represents the 

deviation of sensor iS  with respect to a common origin. In most cases, the deviation of a 

sensor is a constant. ike  is the noise for the kth observation value from sensor iS . It is 

assumed that random vector { ,1 }ik ie k n   obeys the independent and identical distribution, 

and observation noises of different sensors are independent of each other. θi represents the 

position parameter of sensor iS , and i  represents the uncertainty for the position of sensor 

iS . The position uncertainty of a sensor is independent of the observation noise of this sensor. 

The position uncertainties and observation noises of different sensors are also independent of 

each other, respectively. 

Since a non-zero deviation vector can be deducted from observation vector 

}1,1,{ NinkZ iik  , it can assumed that the given deviations { ,1 }i i N    are a zero 

vector without the loss of generality. Accordingly, (2) may be written as 

 

ik i ikZ e      (3) 
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where each element of i  is bounded, and 1 i N  . 

Position uncertainty   is generated due to the disturbance to true position parameter   in 

the environment. The disturbance, which is random, is contained in each sensor. Consequently, 

the value of   for a sensor is either positive or negative. Without the loss of generality, we 

can assume the mean of   is zero. Since position uncertainties of each sensor are 

independent of each other, variance matrix ( )Var   is a diagonal matrix whose diagonal 

elements are limited positive values. Further, since the disturbance in the environment is 

random,   is related to the uncertainty of the environment. Obviously, i i      is also 

a random variable, and  iE    and    i iVar Var   . Therefore, the observation 

model, i.e. (3), can be simplified as 

 

ik i ikZ e      ( 1, 2, , ,ik n   1,2, ,i N  ) (4) 

 

where ike  is a noise vector with zero mean, and each element of variance matrix ( )Var   

)( iVar  is an observation noise whose value is bounded positive. 

 

2.2 Random weighting estimation of multi-dimensional position data 

Let 1 2, , ,
ii i i inZ Z Z Z    , where iZ  is a ip n   matrix, and 2in  and 2p . Denote 

i̂  as the random weighting estimation for the mean of position parameter i , and îis  as the 

random weighting estimation for the variance of i . Thus, i̂  and îis  can be obtained by 

estimation of each sensor’s data iZ  by the following algorithm: 
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(i) Set the tolerance  . 

(ii) Calculate the mean of ikZ  
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Calculate the variance of ikZ  
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(iii) Calculate the random weighting estimation of ikZ  
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(iv) Calculate the estimation accuracy 
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Then, sort ,{ ikZ 1,2, , ik n  } in ascending order by the estimation accuracy iD , yielding the 

order statistic { (1) (2) ( ), , ,
i

i i i nZ Z Z }. 

(v) Calculate random weighting estimation for the mean of order statistic )(kiZ  

 

 


kiẐ =  ki

n

k
k Zv

i

  (10)

 

Calculate random weighting estimation for the variance of order statistic )(kiZ  
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1
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(vi) If    
ˆ

i k i kZ Z     ( 1,2, , ik n  ), the estimation process is terminated. Otherwise, adjust 

kv  and go to (iii).
 

Finally, we have  
ˆ ˆ
i i kZ   and   ˆ

îi i ks Var Z  . Further, it can be easily obtained that 

 î iE   , which means î  is the unbiased estimation of i . It should be noted that in the 

case that the random weighting estimations i̂  and îis  cannot be achieved within the given 

tolerance  , the tolerance   is enlarged to re-calculate the random weighting estimations. 

 

2.3 Optimal fusion estimation 

Section 2.2 provided the computational process for obtaining N independent unbiased 

estimates i̂  and variance estimates ˆ ( 1, 2, , )iis i N   from N sensors. In this section, a 
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method for optimal fusion of the N estimates will be discussed. 

Let 

 

1 1 2 2
ˆ ˆ ˆ ˆ

N Nw w w         (12)

1 2 Nw w w I     (13)

 

where ),,2,1( Niwi   is a weighting matrix, and I  is a unit matrix.  

The optimal fusion estimation is achieved in the sense that ̂   satisfies the following 

conditions: 

(a) ̂   is the unbiased estimation of  , i.e.  ˆE    ; 

(b) ̂   makes tr(s) reach its minimum, where s is the variance matrix of estimation error, i.e. 

 ˆ ˆ( )( )Ts E        , and tr(s) is the trace of s . 

It can be easily seen that ̂ 
 satisfies condition (a). In the following, we discuss how to satisfy 

condition (b). 

When 2N  , the following equation can be obtained from (12) and (13) 

 

1 1 2 2 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ( )w w w            (14)

 

Therefore, 

 

2 1 2 2
ˆ ˆ ˆ( )( ) ( )I w w            (15)
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Let 

 

  ˆ ˆ T

s E          
=      2 11 2 2 12 2 2 22 22

T T TI w s I w I w s w w s w      (16)

 

where  )ˆ)(ˆ( jiij Es   )2,1,( ji . If ji  , jis  is a self-covariance matrix. 

Otherwise, jis  is a cross-covariance matrix. 

Choose 2w  appropriately such that  str  reaches its minimum. Thus, 
2

0
s

w





, i.e. 

 

  11 2 12 12 2 22 22 2 4 2 0T T Ttr s I w s s w s w       (17)

 

Further, we have 

 

 11 12 22 2 11 122 Ts s s w s s     

   1

2 11 12 11 22 12 21w s s s s s s
      

(18)

 

Substituting (18) into (14) and (16), the following may be obtained 

 

    1

1 11 12 11 22 12 21 2 1
ˆ ˆ ˆ ˆs s s s s s            (19)

 

and 
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   1

11 11 12 11 22 12 21s s s s s s s s
       (20)

 

Since   1

11 22 12 21s s s s
    is a non-negative symmetric matrix, 

 

   1

11 12 11 22 12 21 0s s s s s s
      (21)

 

By (20) and (21), 11s s . Similarly we can also obtain 22s s . These demonstrate that the 

fusion estimation has higher accuracy than the single sensor estimation. 

If 1̂  and 2̂  are independent of each other, i.e. 12 21s s , (19) and (20) may be rewritten as 

 

   11 1 1 1
11 22 11 1 22 2

ˆ ˆ ˆs s s s  
        (22)

 

and 

 

  11 1
11 22s s s

    (23)

 

Finally, we have the following theorem for optimal fusion of multi-dimensional position data 

by random weighting estimation. 

 

Theorem  For a multi-sensor system consisting of N sensors, assume the random weighting 

estimations for each sensor’s position parameter are ˆ ˆ ˆ( , 1, 2, )i i iZ i N     . Accordingly, the 

random weighting estimation for the variance of estimation error is  iii ZarVs ˆˆ  , 
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 iii ZarVs ˆˆˆ  and 0ˆ ijs  when ji   ( Nji ,,2,1,  ). Then, the optimal estimation for 

position parameters of the multi-sensor system is 

 

* 1

1

ˆ ˆ
N

ii i
i

s s 


   (24)

 

where 
1

1

1

N

ii
i

s s






   
 
 . 

 

In the following, we will prove the theorem by using the method of mathematical induction. 

Proof  When 2n , it is known based on (22) that the theorem holds. 

Assuming that when n = N-1, the theorem holds. Therefore, 

 

1
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(25)

 

When n = N, it is known that ( 1)
1 2

ˆ ˆ ˆN
Nw w      . Thus, similar to the case when n = 2, we 

can obtain 

 

 
11( 1) ( 1) 1ˆ ˆ ˆN N

NN Ns s s  
        

 

  
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NNs s s
     

 
(26)
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Then, by (25) and (26), we have 
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   

(27)

 

The proof of the theorem is completed. 

 

3 Experimental Results and Analysis 

A prototype system has been implemented by using the proposed methodology for fusion of 

multi-dimensional position data. Experiments have been conducted to comprehensively 

evaluate and analyze the performance of the proposed methodology. The comparison with the 

existing multi-sensor data fusion methods is also discussed in this section. 

Trials were carried out to evaluate the capability of the proposed method for estimation of the 

Earth rotational angular velocity. Two laser gyroscopes (Gyro 1 and Gyro 2) are used to 

measure the Earth rotational angular velocity in the city of Xianyang (Shaanxi Province, 

China). The latitude of the city is 30.1527 . The sampling cycles of Gyro 1 and Gyro 2 are 60s 

and 100s, respectively. The sampling time for each gyro is 2400s. There are 40 data sets 

sampled from Gyro 1 and 24 from Gyro 2. The estimation of single sensor data (data from 

Gyro 1) by the proposed methodology is shown in Fig. 1, in which the estimated angular 

velocity error is within ( 66 107.0,107.0   rad/s). Fig. 2 shows the results for fusion of the 

estimated gyros’ data by the proposed methodology. It can be seen that the angular velocity 
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error obtained by fusion estimation is within ( 66 102.0,102.0   rad/s), which is much 

smaller than that by the single sensor estimation. This demonstrates that the proposed 

methodology can effectively fuse multi-sensor data, and the accuracy is much higher than that 

of the single sensor estimation. 
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Figure 1. Estimation of single gyro data using the proposed methodology 
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  Figure 2. Fusion of the estimated gyros’ data using the proposed methodology 
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Figure 3. Kalman estimation of single gyro data 
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Figure 4. Kalman fusion of the estimated gyros’ data 

 

The performance of the proposed fusion method has been evaluated in comparison with the 

Kalman fusion method. Experiments have been conducted based on the same conditions as Fig. 

1 and Fig. 2 by using the Kalman fusion method, and the results are shown in Fig.3 and Fig. 4, 

respectively. It can be seen from Fig. 3 that the angular velocity error estimated from a single 

sensor (Gyro 1) by the Kalman method is within ( 66 103.1,103.1   rad/s), which is much 

higher than that obtained by the proposed methodology. As shown in Fig. 4, the angular 

velocity error obtained by the Kalman fusion of the data estimated from each sensor is within 
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( 6 60.4 10 ,0.4 10    rad/s), which is twice higher than that obtained by the proposed 

methodology. Comparing Fig. 1 with Fig. 3 and Fig. 2 with Fig. 4, it is evident that the 

proposed method has much higher accuracy than the Kalman method for fusion of multi-sensor 

data. 

Experiments have also been conducted to evaluate the performance of the proposed 

methodology for fusion of heterogeneous sensor data. A GPS (Global Positioning System) and 

an accelerometer are used to measure the acceleration of an object moving at a speed greater 

than 55km/h on a road with a low adhesive coefficient. The moving object has the constant 

acceleration of 2/5 sm . For the accelerometer, the zero bias is g410  and the random white 

noise is 350 10 g . The sampling time periods for the GPS and accelerometer are 1s and 2s, 

respectively. The dynamic simulation time is 1000s. There are 1000 and 500 data sets sampled 

from the GPS and accelerometer, respectively. Fig. 5 shows the estimation of the data obtained 

from a single sensor (the GPS) by the proposed methodology. The maximum error within the 

time period from 200s to 600s is around 20.1 /m s , and the maximum error after 600s is 

around 20.05 /m s . Fig. 6 illustrates the results for fusion of the data estimated from both the 

GPS and accelerometer by the proposed methodology. The maximum error within the time 

period from 200s to 600s was found to be 20.04 /m s , and the maximum error after 600s was 

found to be 20.007 /m s . By comparing Fig. 5 with Fig. 6, it can be seen that the accuracy of 

the fusion estimation is much higher than that of the single sensor estimation. This also 

indicates that the proposed methodology can effectively fuse heterogeneous sensor data. 
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Figure 5. Estimation of the GPS data using the proposed methodology 
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Figure 6. Fusion of the estimated GPS and accelerator data using the proposed methodology 

 

The performance of the proposed fusion method in terms of fusion of heterogeneous sensor 

data has also been evaluated in comparison with the Kalman fusion method. Experiments have 

been conducted under the same conditions as Fig. 5 and Fig. 6 by utilizing the Kalman fusion 

method. Fig. 7 shows the results estimated from a single sensor (the GPS) by the Kalman 
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method. The maximum error within the time period from 200s to 600s was found to be 

20.2 /m s , and the maximum error after 600s was obtained as 20.18 /m s . Comparing Fig. 5 

with Fig. 7, it can be seen that the proposed methodology has much higher accuracy than the 

Kalman method in terms of the single sensor estimation. Fig. 8 illustrates the results for the 

Kalman fusion of the data estimated from both the GPS and accelerometer. The maximum 

error within the time period from 200s to 600s was found to be 20.07 /m s , and the maximum 

error after 600s was obtained as 20.03 /m s . Comparing Fig. 6 with Fig. 8, it can be seen that 

the accuracy of fusion estimation achieved by the proposed methodology is much higher than 

that by the Kalman method. Based on the above experimental results, it is evident that the 

proposed methodology has higher accuracy in fusion of heterogeneous sensor data than the 

Kalman fusion method. 
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Figure 7. Kalman estimation of the GPS data 
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Figure 8. Kalman fusion of the data estimated from the GPS and accelerometer 

 

From the above experiments, it can be seen that the proposed random weighting methodology 

can effectively fuse position data of a multi-sensor system. The accuracy is significantly 

improved by fusion estimation in comparison with single sensor estimation. The fusion 

accuracy of the proposed methodology is also much higher than that of the Kalman filter. 

 

4 Conclusions 

This paper presents a random weighting estimation methodology for fusion of 

multi-dimensional position data. The contribution of the paper is that the theory and algorithm 

of random weighting estimation are established for optimal fusion of multi-dimensional 

position data. Experiments and comparison analysis demonstrate that the proposed 

methodology can effectively estimate position parameters of a multi-sensor system, and the 

fusion accuracy of the proposed methodology is much higher than that of the Kalman filter. 
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Future research work will mainly focus on intelligent multi-sensor data fusion. The proposed 

random weighting methodology will be combined with advanced expert systems and neural 

networks, and thus establishing intelligent random weighting methodologies for automatic 

fusion of multi-sensor data. 
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