143 research outputs found

    The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa

    Get PDF
    Abiotic H2 produced in the Precambrian lithospheric crust is a key substrate at the base of the metabolic chain of chemosynthetic and photosynthesis-independent microbial communities, significant to our understanding of life on early Earth and other planets. H2 cycling processes are also relevant to recent hydrogen exploration efforts and engineered subsurface environments such as radioactive waste disposal sites. In the lithospheric crust, H2 is produced through water-rock reactions (serpentinisation) and radiolysis; the latter directly linked to He through radioelement decay (U, Th). The Witwatersrand Basin in South Africa is an ideal place to study the radiolytic production pathway in particular, because of the low abundance of ultramafic and mafic minerals and therefore low potential for serpentinisation reactions. Gas samples and gas flow rate data (n = 12) were collected from the surface of exploration boreholes tapping the Witwatersrand and Ventersdorp Supergroups. The samples were predominantly composed of CH4 (65ā€“99%), N2 (3ā€“27%), He (0.1ā€“15%), and trace amounts of C2+ hydrocarbons. Notably, H2 in these samples was below detection limit, despite the presence of He - providing a critical indicator of processes removing H2 from the system. Using a Bayesian modelling approach, we test the hypothesis that the observed fluids are generated in-situ, driven by radioelement decay and subsequent microbial methanogenesis, and controlled by porosity of the host rock. The observed data is consistent with this hypothesis, and can be accounted for by a variation in porosity between 0.3 and 2.2% (typical values to Precambrian basement) across the different sampling sites. These He-rich hydrocarbon gases observed at the surface originate from a hydrogeological system that is porosity-constrained and isolated from externally-sourced fluids. Radioelement decay is the primary process driving the generation of H2 and therefore energy production in this subsurface system, utilised by hydrogenotrophic methanogens at the base of the deep carbon cycle. Microbial utilisation is the key mechanism for H2 consumptions and, conversely, preservation, suggesting that conditions favourable to commercial H2 discoveries are likely constrained to hypersaline environments where microbial activity is inhibited. The model results under the proposed hypothesis (consistent N2/H2 ratio between different boreholes) raises the possibility that N2, which often co-occurs with He-rich deep fluids, is also produced through radiolysis, and future work is needed to fully evaluate this hypothesis

    Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria, and Nematoda possibly originating from ancient seas

    Get PDF
    Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing

    A Critical Review of State-of-the-Art and Emerging Approaches to Identify Fracking-Derived Gases and Associated Contaminants in Aquifers

    Get PDF
    High-volume, hydraulic fracturing (HVHF) is widely applied for natural gas and oil production from shales, coals, or tight sandstone formations in the United States, Canada, and Australia, and is being widely considered by other countries with similar unconventional energy resources. Secure retention of fluids (natural gas, saline formation waters, oil, HVHF fluids) during and after well stimulation is important to prevent unintended environmental contamination, and release of greenhouse gases to the atmosphere. Here, we critically review state-of-the-art techniques and promising new approaches for identifying oil and gas production from unconventional reservoirs to resolve whether they are the source of fugitive methane and associated contaminants into shallow aquifers. We highlight future research needs and propose a phased program, from generic baseline to highly specific analyses, to inform HVHF and unconventional oil and gas production and impact assessment studies. These approaches may also be applied to broader subsurface exploration and development issues (e.g., groundwater resources), or new frontiers of low-carbon energy alternatives (e.g., subsurface H2 storage, nuclear waste isolation, geologic CO2 sequestration)

    An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

    Get PDF
    Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by Hā‚‚. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CHā‚„ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic Ī²-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and Hā‚‚ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface

    Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70Ā°C

    Get PDF
    Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100Ā°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine

    Potencijalna upotreba izotopa važnih za okoliÅ” u ispitivanju migracije onečiŔćujućih tvari

    Get PDF
    This article presents the use of natural abundance stable isotope (hydrogen, carbon, nitrogen, oxygen, chlorine) analysis data as a tool for providing important information about the origin of contaminants, the contribution of different sources to a multi-source plume, characterisation of their complex transport (rate and mechanisms) and for evaluating the success of contaminated site remediation. Isotopic signatures of contaminants are useful tracers of their sources, while isotopic fractionation can be used to quantitatively assess the progress of an environmental process such as biodegradation. This new isotopic approach is reliable and can offer more information than traditional techniques in pollutant migration studies, particularly after waste disposal. During biological degradation of any organic compound, molecules containing lighter isotopes are degraded, and the portion of heavier isotopes in the substrate is increased, identifying specific microbial roles in biogeochemical cycling. Since isotopic fractionation is proportional to degradation, depending on the type of contamination, a microbial degradation of 50 % to 99 % of the initial concentration can be quantified using isotope ratio measurements.Cilj ovog rada je da se prikaže koriÅ”tenje podataka analize prirodne obilnosti stabilnih izotopa (vodika, ugljika, duÅ”ika, kisika i klora) kao alata za dobivanje važnih informacija o porijeklu onečiŔćujućih tvari, doprinosu različitih multikomponentnih onečiŔćivača, karakterizaciji njihova kompleksnog transporta (brzine i mehanizma) i praćenja uspjeha remedijacije onečiŔćenih mjesta. Izotopski sadržaji onečiŔćujućih tvari koriste se kao traseri za određivanje njihovih izvora, dok se izotopsko frakcioniranje može iskoristiti za kvantitativnu procjenu toka procesa kao Å”to je biodegradacija. Takav nov izotopski pristup je pouzdan i nudi viÅ”e informacija od tradicionalnih tehnika kontrole putovanja onečiŔćivala, napose nakon odlaganja opasnog otpada na zemljiÅ”tu. Za vrijeme biodegradacije nekog organskog spoje molekule koje sadržavaju lake izotope lakÅ”e se degradiraju, a dio težih izotopa u supstratu se povećava, Å”to upućuje na mikrobioloÅ”ku ulogu u biokemijskom ciklusu. Kako je izotopsko frakcioniranje proporcionalno degradaciji zavisno od tipa onečiŔćenja, koriÅ”tenjem podataka mjerenja izotopskih odnosa može se procijeniti mikrobioloÅ”ka degradacija od 50 % do 99 % od početne koncentracije
    • ā€¦
    corecore