1,556 research outputs found

    Assessing Rigid and Non-Rigid Spatial Thinking

    Get PDF

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Stochastic Collapse and Decoherence of a Non-Dissipative Forced Harmonic Oscillator

    Full text link
    Careful monitoring of harmonically bound (or as a limiting case, free) masses is the basis of current and future gravitational wave detectors, and of nanomechanical devices designed to access the quantum regime. We analyze the effects of stochastic localization models for state vector reduction, and of related models for environmental decoherence, on such systems, focusing our analysis on the non-dissipative forced harmonic oscillator, and its free mass limit. We derive an explicit formula for the time evolution of the expectation of a general operator in the presence of stochastic reduction or environmentally induced decoherence, for both the non-dissipative harmonic oscillator and the free mass. In the case of the oscillator, we also give a formula for the time evolution of the matrix element of the stochastic expectation density matrix between general coherent states. We show that the stochastic expectation of the variance of a Hermitian operator in any unraveling of the stochastic process is bounded by the variance computed from the stochastic expectation of the density matrix, and we develop a formal perturbation theory for calculating expectation values of operators within any unraveling. Applying our results to current gravitational wave interferometer detectors and nanomechanical systems, we conclude that the deviations from quantum mechanics predicted by the continuous spontaneous localization (CSL) model of state vector reduction are at least five orders of magnitude below the relevant standard quantum limits for these experiments. The proposed LISA gravitational wave detector will be two orders of magnitude away from the capability of observing an effect.Comment: TeX; 34 page

    Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments

    Get PDF
    Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed

    Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids

    Full text link
    Incoherent neutron scattering experiments are simulated for simple dynamic models: a glass (with a smooth distribution of harmonic vibrations) and a viscous liquid (described by schematic mode-coupling equations). In most situations multiple scattering has little influence upon spectral distributions, but it completely distorts the wavenumber-dependent amplitudes. This explains an anomaly observed in recent experiments

    Qweak: A Precision Measurement of the Proton's Weak Charge

    Full text link
    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q2Q^2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Qwp=1−4sin⁡2ξwQ_w^p = 1-4 \sin^2 \theta_w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003 proceeding

    Search for Millicharged Particles at SLAC

    Get PDF
    Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such "millicharged" particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted to Physical Review Letter

    Baryonic systems with charm and bottom in the bound state soliton model

    Get PDF
    The binding energies of baryonic systems (BS) with baryon number B=2,3B=2, 3 and 4 possessing heavy flavor, charm and bottom, are estimated within the rigid oscillator version of the bound state approach to chiral soliton models. Two tendencies are noted: the binding energy increases with increasing mass of the flavor and with increasing BB. Therefore, the charmed or bottomed baryonic systems have more chances to be bound than strange baryonic systems discussed previously. The flavor symmetry breaking in decay constants FF is considered which is especially important for baryonic systems with bottom quantum numbers. Generally, for heavy flavors the scale of the binding energies of BS depends on the scale of flavor symmetry violation in rF=FF/Fπr_F=F_F/F_\pi.Comment: 9 pages, no figures. Modified version of a talk presented at the International Workshop JHF98 on Science at Japan Hadron Facility (KEK, Tsukuba, March 4-7, 1998). Some statements concerning the case of very heavy quark flavor are changed and several misprints are remove
    • 

    corecore