2,376 research outputs found

    Renormalized non-modal theory of the kinetic drift instability of plasma shear flows

    Full text link
    The linear and renormalized nonlinear kinetic theory of drift instability of plasma shear flow across the magnetic field, which has the Kelvin's method of shearing modes or so-called non-modal approach as its foundation, is developed. The developed theory proves that the time-dependent effect of the finite ion Larmor radius is the key effect, which is responsible for the suppression of drift turbulence in an inhomogeneous electric field. This effect leads to the non-modal decrease of the frequency and growth rate of the unstable drift perturbations with time. We find that turbulent scattering of the ion gyrophase is the dominant effect, which determines extremely rapid suppression of drift turbulence in shear flow

    All-electrical time-resolved spin generation and spin manipulation in n-InGaAs

    Full text link
    We demonstrate all-electrical spin generation and subsequent manipulation by two successive electric field pulses in an n-InGaAs heterostructure in a time-resolved experiment at zero external magnetic field. The first electric field pulse along the [11ˉ0][1\bar10] crystal axis creates a current induced spin polarization (CISP) which is oriented in the plane of the sample. The subsequent electric field pulse along [110] generates a perpendicular magnetic field pulse leading to a coherent precession of this spin polarization with 2-dimensional electrical control over the final spin orientation. Spin precession is probed by time-resolved Faraday rotation. We determine the build-up time of CISP during the first field pulse and extract the spin dephasing time and internal magnetic field strength during the spin manipulation pulse.Comment: 5 pages, 4 figure

    Photon reabsorption in fluorescent solar collectors

    No full text
    Understanding photon transport losses in fluorescence solar collectors is very important for increasing optical efficiencies. We present an analytical expression to characterize photon reabsorption in fluorescent solar collectors, which represent a major source of photon loss. A particularly useful universal form of this expression is found in the limit of high reabsorption, which gives the photon reabsorption probability in a simple form as a function of the absorption coefficient and the optical étendue of the emitted photon beam. Our mathematical model predicts fluorescence spectra emitted from the collector edge, which are in excellent agreement with experiment and provide an effective characterization tool for photon transport in light absorbing media

    Integrability and action operators in quantum Hamiltonian systems

    Get PDF
    For a (classically) integrable quantum mechanical system with two degrees of freedom, the functional dependence H^=HQ(J^1,J^2)\hat{H}=H_Q(\hat{J}_1,\hat{J}_2) of the Hamiltonian operator on the action operators is analyzed and compared with the corresponding functional relationship H(p1,q1;p2,q2)=HC(J1,J2)H(p_1,q_1;p_2,q_2) = H_C(J_1,J_2) in the classical limit of that system. The former is shown to converge toward the latter in some asymptotic regime associated with the classical limit, but the convergence is, in general, non-uniform. The existence of the function H^=HQ(J^1,J^2)\hat{H}=H_Q(\hat{J}_1,\hat{J}_2) in the integrable regime of a parametric quantum system explains empirical results for the dimensionality of manifolds in parameter space on which at least two levels are degenerate. The comparative analysis is carried out for an integrable one-parameter two-spin model. Additional results presented for the (integrable) circular billiard model illuminate the same conclusions from a different angle.Comment: 9 page

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon \hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style

    Possibility of local pair existence in optimally doped SmFeAsO(1-x) in pseudogap regime

    Full text link
    We report the analysis of pseudogap Delta* derived from resistivity experiments in FeAs-based superconductor SmFeAsO(0.85), having a critical temperature T_c = 55 K. Rather specific dependence Delta*(T) with two representative temperatures followed by a minimum at about 120 K was observed. Below T_s = 147 K, corresponding to the structural transition in SmFeAsO, Delta*(T) decreases linearly down to the temperature T_AFM = 133 K. This last peculiarity can likely be attributed to the antiferromagnetic (AFM) ordering of Fe spins. It is believed that the found behavior can be explained in terms of Machida, Nokura, and Matsubara (MNM) theory developed for the AFM superconductors.Comment: 5 pages, 2 figure
    corecore