THE

U N IVE RS ITY University of Rhode Island

OF RHODE ISLAND Digital Commons@URI
Physics Faculty Publications Physics
2001

Integrability and Action Operators in Quantum
Hamiltonian Systems

Vyacheslav V. Stepanov

Gerhard Miller
University of Rhode Island, gmuller@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/phys facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

Stepanov, V. V,, & Miiller, G. (2001). Integrability and action operators in quantum Hamiltonian systems. Physical Review E, 63(S),
056202-1/9.
Available at: http://dx.doi.org/10.1103/PhysRevE.63.056202

This Article is brought to you for free and open access by the Physics at Digital Commons@URLI. It has been accepted for inclusion in Physics Faculty

Publications by an authorized administrator of Digital Commons@URI. For more information, please contact digitalcommons@etal.uri.edu.


http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevE.63.056202
mailto:digitalcommons@etal.uri.edu

PHYSICAL REVIEW E, VOLUME 63, 056202
Integrability and action operators in quantum Hamiltonian systems

Vyacheslav V. Stepanov and Gerhard Iu
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817
(Received 26 April 2000; revised manuscript received 27 December 2000; published 12 Apjil 2001

For a (classically integrable quantum-mechanical system with two degrees of freedom, the functional
dependencél = HQ(\A]1 ,32) of the Hamiltonian operator on the action operators is analyzed and compared with
the corresponding functional relationshi{p4,q1;p2,92) =Hc(J1,J5) in the classical limit of that system.

The former converges toward the latter in some asymptotic regime associated with the classical limit, but the
convergence is, in general, nonuniform. The existence of the funléitiehio(fll,jz) in the integrable regime

of a parametric quantum system explains empirical results for the dimensionality of manifolds in parameter
space on which at least two levels are degenerate. The analysis is carried out for an integrable one-parameter
two-spin model. Additional results presented for tirgegrable circular billiard model illuminate the same
conclusions from a different angle.

DOI: 10.1103/PhysReVE.63.056202 PACS nuner05.45~-a, 75.10.Hk, 75.10.Jm

I. INTRODUCTION cause that gives rise to the signatures of quantum integrabil-
ity described in Ref[5] and that explains the relationship
A conspicuous phenomenological discriminant betweerbetween level crossing manifolds and integrability manifolds
quantized integrable and nonintegrable parametric Hamilestablished in Ref4]. We argue that the natural cause is the
tonian systems with two or more degrees of freedom is th@resence of action operators as constituent elements of the
occurrence or prohibition of level crossings between stateslamiltonian operator for integrable quantum systems.
within the same invariant Hilbert subspace of the underlying The textbook solution of an integrable classical dynamical
symmetry groug1-3]. Consider a quantum system whose system with two degrees of freedom, specmeq by an gnalytlc
Hamiltonian depends od continuous parameters. Suppose fUnction H(p1,d1;p2,q;) of canonical coordinates, is to
that this model igclassically integrable if thed parameters traqsform the Hamiltonian into a functl_on of two actlon-co-
satisfy r relations, which is equivalent to stating that the ordinates: H=Hc(J.J,). The canonical transformation

model is integrable for parameter values on an integrability: P .Gi)—(J;.6), 1=1,2 to action-angle coordinates
. . : o . , . amounts to a solution of the dynamical problem because it
manifold of dimensionalityd,=d~—r in d-dimensional pa-

transforms Hamilton’s equations of motiop,= —dH/Jdq; ,
rameter space.

Empirical evidence shows that almost all level crossings 1 =0H/op;, generically a set of coupled nonlinear differen-

occur at parameter values on the integrability manifold. Gelial equations, intaJ;=0, 6, :(g)HC/‘?‘]‘E“’i with the solu-
ons J;=const, 6,(t)=w;t+ 6, .

nerically, two levels that are degenerate at one point on thil - N )
integrability manifold remain degenerate for any variations 1S solution is guaranteed whenever a second integral of
of the d parameters that satisfy tlmantegrability conditions the motion can _be _found,_ 1.€., an analytic  function
plus one condition specific to the two levels in question. Thi 1(P1.91:P2.05), which is functionally independent ¢f and

: . : : as a vanishing Poisson bracket wkhdl/dt={H,I}=0.
Ifle)c{zli\:r?tleer?stic:ﬁaslt?él\?g tcr;r{(j)tslsei::el :12?1?1‘2?(;:(:5;2?;:? Zn(]_Deriving the expressiontlc(Js,J) andlc(Js,J,) from H

. . . 9 ' and | requires the use of separable canonical coordinates.
bedded in the integrability manifold.

A recent stucy4], which investigated this issue system- Finding separable coordinates can be a difficult task even if

atically, showed for a two-spin model witi=6 andd the second invariant is known.
, - = | . . .
=5, the level crossing manifolds are, in fact, four- The functionsHc(J;.,Jp) andlc(Jy,J,) establish a piv

dimensional. and that thev are all confined to the ﬁVe_otal link between an integrable classical system and a quan-
) ) i - y a tized version of it. Semiclassical quantization derives its rai-
dimensional integrability manifold. It showed, moreover,

~ ; . .
that the (classical integrability manifold can be recon- son d’dre from the obvious fact that quantizing a functional

structed from the(intrinsically quantum-mechanidalevel rglation is much less problematic if it involves only quanti-
crossing manifolds. ties such a$i, I, J;, andJ, yvhose guantum counterparts are
A related study5] of the same model system showed thatguaranteed to be commuting operators.
the effects of nonintegrability on the energy-level spectrum
and on the spectra of other quantum invariants are akin to the
effects of a symmetry reduction. Observed energy-level de-
generacies were attributed to discrete or continuous symme- In the context of this paper, it is useful to distinguish three
tries of the quantum model Hamiltonian and tdpmssibly  renditions of a given model systerti) the quantumversion,
hidden symmetry associated with tHelassical integrabil-  (ii) the classicalversion, andiii) the (semiclassicallyquan-
ity condition. tizedversion.
The focus of the present paper is to illuminate the natural The (primary) quantum model is specified by the Hamil-

II. QUANTUM VERSUS QUANTIZED
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tonian expressed as an operator valued function of a set of o1

dynamical variablegposition, momentum, spin..). The |=Mz=§(5§+ S). 3
commutation relations of these operators and the metric of

the associated Hilbert space along with the rules of quantun, the classical limiti—0, c—, and#o(o+1)=s, the
mechanics then determine, via the Heisenberg equation %f

. : : . perators S turn into three-component vectorsS
ir::toet:(;r;i the time evolution of any observable quantity Of:s(sin{z‘i cose:, sind: sing;, cosd), and Eq.(2) then de-

. o I . ri he energy function of an nom Hamiltonian
The classical limit converts the Hamiltonian operator into>C bes the energy function of an autonomous Hamiltonia

the classical energy function, the commutator algebra of dy_system with two degrees of freedom and canonical coordi-

namical variables into the sympletic structiiee fundamen- natesp; =scosd;, 6;=¢;, andi=1,2[10]

tal Poisson bracketsand the Heisenberg equation of motion

for any operator into the Hamilton equation of motion for the

corresponding classical quantity. These quantities, in turn, Generically, the classical time evolution of this system is

enable us to express the energy function as a classical Hamitonlinear and quasiperiodic. In the parameter rangex0

tonian, i.e., as a function of canonical coordinates. <1, the following relation between the integrals of the mo-
The quantization of a classical Hamiltonian system retion H=E (energy, | =M, (magnetizatioh and a set of

quires a prescription for translating the functional relationsclassical actions,,J, can be inferred from the exact solu-

between classical dynamical variables into functional relation [11]:

tions between corresponding operators. Semiclassical quan-

tization is one neat and clean procedure applicable to all 1 (= z

integrable classical systems. It borrows from classical me- J1=2M,, szJOdtlJr—{z,

chanics the functional dependente=Hc(J;,J,), of the

Hamiltonian on the action operators and postulates that the 1

eigenvalue spectrum of the latter consists of equidistant lev- z(t)= 5 s(cosd —cosdhy) =2z sn(pt.ze /),
els spaced by: [6].

A. Classical actions

pzocn(pt,zg/a) din(pt,zy/a)

A 1 = _ -
()=f|ni+gai], =12 (1) {(H=tanes— o) E+«[M2—z5sr(pt,zo/a)]
4
with integern; . The (intege) Maslov indicesa; are deter- Z6=Zm—\Zn—C, a*=zp+\zp—c,
mined by the topology of the classical trajectories in phase o 22 22 )
space[7]. Semiclassical quantization thus makes specific c=[(s*=M9)*—(E+«M))“]/(1—-«*),
predictions for the energy-level spectrum of the quantized 2
version of the model system at hafgl. 2=M2+ s"—«E - f % p=11-K%a
It is a well-known fact that thésemiclassicallyquantized meTz 1kt al’ '

energy-level spectrum and thgrimary) quantum energy- ) .
level spectrum do not coincide. The latter implies the exis\Vhere snp,x), cn(p,x), dn(p,x) are Jacobian elliptic func-

tence of a functionH(J;,d,) with properties that differ tions andK (p) is a complete elliptic integrgl1.2].

o ) = For the casec=1 with higher rotational symmetry, con-
significantly from those of the functioHc(J1,J2). The op-  gigerable simplifications occur in the classical time evolu-

erator valued functio g, including its dependence on a set tjoy. Both spins precess uniformly about the direction of the
of Hamiltonian parameters that can be varied continuously.qnserved vectoB;=S,+S,, and the precession rate dis
across some integrability manifold of the underlying model, _ |S;| for both spins. Equation&) for the classical actions

is a distinctive feature of quantum integrability. become
The properties oHq(J;,J,) in relation to those of the
semiclassical functioHc(J;,J,), will be investigated in J1=2M;, (58
Sec. llI for an integrable two-spin model and in Sec. IV for 22 a2 2
the (integrabl@ circular billiard model. 3 _4 fmadt 2_ °s"tM;-z (5b)
7)o (1+ ) (E+MI-22) |
Il. TWO-SPIN MODEL
_ az, cosat
We consider two quantum spirf;,S, of equal length 2t)=zosinat, {()=g o2
Jo(o+1) (=313, ...) interacting via a uniaxially sym- 20
metric exchange interactid®]: 1 2
zgzi(serE) 1——a2—Z . a=\2(s*—E),
H=—(SS+89) -~ <58, 2
and can be evaluated in the closed form
The second integral of the motion, which follows from No-
ether’s theorem, is J.=2M,, (6a)

056202-2
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Jo=—2(s*—E)+(s—M,)sgns>—E—2sM,)
+(s+M,)sgn(s>— E+2sM,). (6b)

Inverting relations(6) yields a degree-two polynomial de-
pendence of, M, on J;,J5:

1
IC(leJZ):MZZEJli (79
2 1 2
Hc(Jl,Jz):E:S _EIC, (7b)

where |,=J,—|J;| if s|J;|>s’~E and |,;=2s—J,, if
s|J,|<s®>—E.

B. Quantum actions
For the casex=1, the exact quantum spectrum follows
directly from the higher rotational symmetry BF:

. h? 5 h
(Hyo=h20(o+1)— 7|(| +1), <M2>Q:§m’ (®)

wherel=0,1, ...,2r is the quantum number of the total
spin andm=—1,—1+1,...,+1 that of its z component.
One set of quantum actiorté) has eigenvaluelL3]

(ji>/ﬁEJiQ=—a',—a'+l, ... to, 9
which are related tb, m as follows:

=0-1, I¥=0—1-m (Mm=<0), (109

R=0-1+m, JI¥=0-1 (m=0). (10b)

The two quantum invariants expressed as explicit function
of action operators then read

P | 1 ..
HQ(Jl,Jz)zH:Eﬁzo(a+1)+§mm(31,32)

X[#(20+1)—min(J;,d5)], (118

1. .
2 (‘]l_‘]z)v

No==

(11b

4

IQ(jlajZ):

where minf]l,jz) selects the action operator with the smaller

eigenvalue.

While the functional dependence in Ed.1) is again de-
scribed by a degree-two polynomial, it is different from the
functional dependenad) found classically. The former can-

not be reconciled with the latter by any canonical transfor-
mation, nor does the quantum spectrum converge uniformly

toward the classical spectrum for—«, as we shall see in
Sec. llIC1.
For the cases € k<1 we must calculate the (2+1)2

eigenvalues of the two quantum invariaftsM, by numeri-
cal diagonalization ofl in the 4o+ 1 invariant subspaces of

PHYSICAL REVIEW E63 056202

M,. From the numerical data fdiH), (M), we can infer

the correct assignment of action quantum numiésg# to
eigenstates by smoothly connecting the spectrum in param-
eter space to the known relatiofisl) for «=1. The resulting

data forHo(J;,32), 1o(J1,J2) can then be compared with
the (semiclassically quantizgdnhverse classical relation(d),
Hc(31,32), 10(31,3,), to high precision albeit not analyti-
cally as in the case= 1. Numerical results will be presented
in Sec. llIC2.

C. Quantum corrections to quantized actions

In some simple applications, the functiohk,,lo are
identical to the function$d,l-. Hence there are no such
quantum corrections. If we take, for example, the two-spin

model H=—SS3, then both classical invarian& M, de-
pend solely on the canonical momenta, and the latter are
identified to be actions:p;=J;. Hence we haveE=
—-J1Jy, M,=(1/2)(J;+J5), which, upon semiclassical
guantization with(J;)/i=—0o, —o+1, ... +o, yields the
exact quantum eigenvalue spectrum. This situation is excep-
tional. For all cases of Eq2) with 0=<«=<1, quantum cor-
rections do exist.

1. Analytic results fork=1

For the parameter setting= 1, the functionsH o(J;,J5),
1o(J1,35), as given by expressiorig1), are to be compared
to the semiclassical expressioht:(J;,J,), 1c(J;,d,) in-
ferred from the classical relation@) with quantum actions
(9). It turns out to be more practical to perform the compari-
son for the inverse functional relations. We substitu{er
+1) for s? and the exact eigenvalué8) for E, M, into the
classical expression&). The result is a set of noninteger
valued semiclassical action quantum numbers

S
J=m, (123
0 m=I=0
=4 2Jo(e+1)—I(1+1) |m<my (12

Iml=VId+1)  [m]>m,

wheremg=1(1+1)/2Jo(o+1). An optimal match with the
guantum action$10) can be achieved if we subject Ed.2)
to two successive canonical transformations:

if'=if,
o [2Volo+1)—[37]+37 JI5=0
2138 JS>o,
c’ 1 c’
J; =2 0'(0'+1)+0'+§ J; <0
JC”:

, o1
IS —2Jo(o+1)+0+3§ +

E ‘](1:/>0

056202-3
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) 1 ) ) 6 (q)
3§ —2\olor D+t 5-95 If'=0 @
Jg//: l al
-2 olot)+o+z J¢'>o0.
2+
<
We thus arrive at the expressions ol
ro1 2l
o+ 5 m=1=0
1 - ' ' '
=1 o= \il+D+5 m=0 (139 -4 2 (&’) 2 4
1 T T T T T T
0'—\/|(|+1)+§+m m>0, oL ® . ’ R
\
r 1 1r h
otz m=|=0
2 =< 0Ot £ 4 4
" 1
Jy =X« cr—\/l(l+1)—m+§ m=0 (13b) ;
1
o= \I(I+1)+5 m>0. ol
\
3 2 4 0 1 2 3

The deviations of the noninteger valug§ , 35" from the i

. Q Q . . R R
integer valuedly, J5 then describe the quantum corrections FIG. 1. (a) Eigenvalue(H) (energy versus eigenvaluéil,)

to the semiclassical actions. __— : : : :
(magnetizatiop as given in Egs(8) of all eigenstates of Hamil-
; 1_ -1
Using VI(I+1)—3=1+0(I""), we see at once that the gnjan(2) with k=1, o=2. (b) The full triangles are the quantum

genuinely quantum-mechanical relatiofi$) and the semi-  images ¢2,J%) of these eigenstates in the action plane as provided
classical relation$13) are asymptotically equivalent at low py Egs. (10). The open circles are the semiclassical images
energies(largel) for c—o. At high energiegsmalll), on (38" ,3S") as provided by Eqs13) with $2=a(o+1).
the other hand, the two relations remain distinct no matter
how large we choose the value of the spin quantum numbeérea for o—o. A useful measure of the leading quantum
g.

To set the stage for the casesc®<1, we plot in Figs.

1(a) and Za) the eigenvalues ofl versus those of\A/IZ in
representations with spin quantum numbers2 and o _ _ 10 1C"
=4, respectively. The patterns of regularity and similarity in AJ=V(AJ)"H(AR)% AJ=Tr—Y; (14

the arrays of points are a direct consequence of the smooth . . .
functional relations HQ(jler)a |Q(31’32). The map represents the distance between the triangles and circles on

R ; : corresponding array sites in Figsbl and 2Zb). From Eqgs.
((A),(M))—(32,3%) from the plane of invariants to the (10) anpd (13) \g/]ve ob%/ain gsibland 2b) q

action plane is provided by Eq§10) and produces the tri-
angles in Figs. (b) and 2Zb). These points form a perfect
lattice with unit spacing.

If we use instead the mad3) provided by semiclassical AJ=
guantization, we obtain the array of open circles in Fidp) 1
and Fig. 2Zb). The bonds shown in par{®) and (b) of the
two graph_s correqund to each other. T_he distprtion in_ the The dependence afAJ on J?, ng thus represents the
Iattlce' of circles relat|ye to the perfect lattice of trla}ngleg IS @1 /- quantum correction to the semiclassically quantized ac-
graphical representation of the quantum corrections in thgons |t has an inverse first power divergence in one corner
functionsHq(J1,J2), 1o(J1,J2) relative to the semiclassical of the action plane for energy levels at the upper threshold of
functionsHe(31,35), 1c(31,3,). It visually confirms what the spectrumoAJ~[4v2(1/a)]™ 2. For states with/o<1
we have already concluded from comparing EG€) and the leading quantum correction is©{1). Inthis part of the
(13), namely, that the deviations die out at low energiesspectrum, semiclassical quantization remains inadequate no
(lower left area but persist at high energiegipper right matter how large we choose the spin quantum nunaber

correction to the semiclassical relatidtc(J;,J,) is the
quantitycAJ, where

V2 1=0

\/Q(I—%— I(I+1)) [ #0. (19

056202-4
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20 |,

10 +

10+

-20

Jz
o
B
Jy
[}
&
)

‘ . , . . . , 3 2 -1 0 1 2 3
-6 -4 2 0 2 4 6 5
J

FIG. 3. (a) Eigenvalue(H) (energy versus eigenvaluéM)
FIG. 2. Plot of the same quantities as in Fig. 1 but for spin magnetization of the (20+1)2=25 eigenstates of the two-spin
quantum numbeo =4. model (2) with k=0.1 for c=2. Data from a numerical diagonal-
ization. (b) The full triangles are the eigenvalud8=(J;)/# of the
The state with the largest quantum correction to semiclasaction operators the images of the inverted functiblr&;{fllfz)
sical quantization is the singlet combination of the two spins; (Jl, J,). The open circles are the semiclassical |ma@§s (JC

This state or any nearby state in the action plane have nﬁom Egs. (4) with s —0'(0'+ 1), the images of the inverted func-
proper semiclassical representation. tions He(31,35), 1c(31,3,).

2. Numerical results for 8<x<1 for the classical actions and subject the resulting set of dis-

Here we use the same graphical representation evegtete valuesI® to the transformatlon§C—>JC _>JC” we
though we must rely on the results of a numerical diagonalphtain arrays of points in the form of distorted lattices as
ization for the energy eigenvalues. A1 we observe that_ illustrated by the open circles in Figs( and 4b) for the
certain features of the quantum invariants change qualitayyg examples at hand. The deviations of these data points
tively because the rotational symmetry Hf has been re-  from the sites of a perfect lattidenarked by trianglesthen
duced whereas other features remain qualltatlvely the Sa%am represent the quantum corrections to (gm‘n|c|ass|-
because the Integrablllty of the model has not been deca”y) quant|zed actions. The patterns in F|gﬂ))3ind 4b)
stroyed. are also connected to those in Figéh)land Zb) by smooth

In Figs. 3a) and 4a) we have plotted the eigenvalues deformation of the lines of bonds upon gradual variation of
(H), (M,) of the two quantum invariants versus each otherthe parametek.
at k=0.1 for c=2 and o=4, respectively. Again the data A closer look at the Xf quantum correction is afforded if
points display regular patterns. They evolve from the patwe plot the scaled distanceAJ versus the scaled action
terns shown in Figs.(&) and 2a) by smooth deformation of quantum number§?/a and JS/U for a system with many
the lines of bonds as the value ofs lowered gradually. The more levels ¢=40). A contour plot of the resulting land-
lower symmetry removes the level degeneracies pertaining técape is shown in Fig. 5. Convergence hJ toward a
the strings of horizontal bonds in Figstal and 2a). Note  smooth function of)¥/o, JS/o is almost uniform. In the
that level crossings are a natural consequence of the defoggse x=0.1 con5|dered here there are two poifds op-
mation process anywhere in the parameter range & 1. posed to a single corner point at=1), where the 1# cor-

When we substitute the eigenvalugs) and(M,) from  rection diverges. The data points\J closest to these loca-
the numerical diagonalization into the exact express)n tions again tend to growo.

056202-5
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20

15

10+

r (b) ¢ 1 o

N Wb

FIG. 6. Scaled distanceAJ for =40, xk=0.5 between the
images of the inverted functiondo(J;,J5), 10(3;,3,) and the
images of the inverted functionts(J3;,3,), 1c(31,3,).

-
T

Je
o

[
puy
T

sical equations of motion have a fixed point. For eigenstates
with action quantum numbers in the vicinity of this point,
quantum effects persist no matter how largés made.
One point in the action plane wheoelJ diverges, exists
. X , s . . throughout the regime €«<1. With « increasing from
-6 -4 2 0 2 4 6 zero, the singularity moves gradually toward one corner of
Ji . -
the action plane, and the energy of the state pertaining to
FIG. 4. Plot of the same quantities as in Fig. 3 but for spinthose action coordinates moves toward the upper threshold
quantum numbetr= 4. of the spectrum. This trend is indicated in Fig. 6, which
shows the 1 landscape fork=0.5. The endpoint of this

The two sharply peaked maxima in the landscape of Figgradual shift, the_ case=1, was described in Sec. lIIC1.
5 will merge into a single divergence as-. At this point . 1€ asymptotic landscape for—, to which the graphs
in the action plane, the leading quantum correction to semil” Figs- 5 and 6 converge almost everywhere, can now be

classical quantization is again @(1). Its location in the used as the reference frame for the higher-order quantum

action plane does, however, no longer coincides with an excorrections. The deviations of the data points from this new

tremum in the energy-level spectrum. The divergence ijeference, appropriately scaled, will produce another land-

oAJ occurs at energ=«s? (for o—), where the clas- SC2P€ representing theof/correction to the semiclassically
’ quantized action§14].

We consider the lind3=J$— /2 for this purpose. In the
main plot of Fig. 7 we show the &/correctionsocAJ along
this line for 0=4,8,16,32. Also shown are data far
=1600, which are very close to the asymptotic values for the
1/o correction and now serve as the reference line for the
1/a? corrections.

In the inset to Fig. 7 we have plotted the scaled deviations
of the 0=4,8,16,32 data from the new reference line. The
results suggest that these data again converge toward a line,
which will then be the reference line fordJ corrections.

Like the reference line in the main plot @) [(b)], which is
embedded in the landscape Fig.Fg. 6], the new reference
line will be embedded in a landscape representing toe 1/
guantum corrections to semiclassical quantization over the
entire action plane.
Sio The point to be emphasized here is not so much the exact
shape of the landscapes that represent successive orders of

FIG. 5. Scaled distance'AJ for =40, x=0.1 between the quantum corrections to the semiclassically quantized actions,
images of the inverted functiond(J;,J5), 1o(J1,J;), and the  nor even that such corrections exist, and that the leading term
images of the inverted functiort$c(J;,J,), 1c(31,3,). may be ofO(1) at special points rather than 6f(o 1) as

' ' '
AW N
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500 — T —

400 & . =" "a a0

300 l.l..l.I--l.l Ly

oAJ

200+ = ll..ll.-ll -

100} .--...-.-.-..

920 I -1‘0 0 1‘0 I 20

FIG. 8. EigenvaluéH) (energy versus eigenvalué) (angular
momentum as given in Eq(19) of the eigenstates near the bottom
of the spectrum of the circular billiard model.

Other integrable and nonintegrable variations of the quantum
billiard problem have been discussed elsewhere in the recent
literature[16,17.

Here we use some results of REE5] to investigate the
functional dependence of the circular billiard Hamiltonian on
the actions quantum mechanically and semiclassically for
comparison with the two-spin results presented previously.

Integrability of the circular billiard model is guaranteed

®) by the conservation of angular momentlnsp,. The ca-
03 05 N 0 05 nonical transformation to action-angle coordinates produces
J3/o the following relations between the integrals of the mottgn

FIG. 7. Dependence of the scaled distaneaJ for () « L and the two-action variables:

=0.1, (b) k=0.5 between the images of the inverted functions

Ho(J1,35), 10(J1,3,) and the images of the inverted functions

Hc(31,3,), 1c(31,3,). Shown are data for=4 (squares o=8 —
(circles, o=16 (triangles, o= 32 (pentagons ando= 1600(solid 2mE
line). Inset: Scaled deviationo[cAJ®—cAJ?] of the & T
=4,6,8,16 data from the reference lite=1600 data

J.=L, (173

\]2:

{\/Rz—xz—xarcco%%”, (17b

wherex=/L?/2mE. The eigenfunctions of the circular bil-
might be expected. Most important is that these results deniiard, i.e., the solutions of

onstrate the existence of the discrete functidg(J;,J,)
i i iltoni 21 1
with a continuous dependence on the Hamiltonian parameter d d 2
. . - =+ 5 +k |V (r,9)=0 (18
« that produces level crossings quite naturally. or ror r2a9d

IV. CIRCULAR BILLIARD with k?=2mE/#2 and Dirichlet boundary conditions are
known. The exact expressions for the two quantum invari-

In the second application we consider a particle of nmass N S
bp b antsH (energy andL (angular momentujnare

that is free to move two dimensionally across a circular are
of radiusR. The classical Hamiltonian expressed in polar

. i R hlal "
canonical coordinates reads (H)= WF!; (Ly= =14, (19
pe o ph
. _ r
H(pr.ripy,9)= ﬁJF omr2 +V(r), (16) wherel =0, 1, 2, ... andy is thekth zero k=1,2,...) of

the Bessel functiod,(x).
whereV(r) is a hard-wall potential that confines the particle  One major distinction between the circular billiard model
torsR. and the two-spin model is that all invariant Hilbert subspaces
In a recent study, Ree and Rei¢lib] analyzed this sys- are infinite dimensional in the former and finite-dimensional
tem classically and quantum mechanically as an integrable the latter. The energy has no upper bound in the circular
limiting case of the circular billiard with a straight cut. In billiard and the angular momentum has neither upper nor
general, the cut renders the classical time evolution chaotidower bound.
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into Eq. (19) for use in Eq.(17b):
Jo(1,k)~%| k L ! O(k™? k>1 22
21, k)~ “atEax T (k™9 ], k=l (22

The quantum corrections also decrease with incredireg
fixed k, but not all the way to zero. To demonstrate this for
k=1, we use the asymptotic expression ffark=1 [12],

aj~ 1]+ Cy[I["3+CylI| 1B (23

with C;=1.8558 andC,=1.033 for use in Eq(19). When
substituted into Eq(17b) we obtain the asymptotic value

J,(1,1) = (R/37)(2C1)¥2+ O(|I]| ~23), (24)

which deviates from the reference valtigl — ;) by roughly

) _ ) o 1%. The conclusion is that the semiclassical regime of the
FIG. 9. Quantum corrections to the semiclassical prediction forsireylar billiard is restricted to states witts>1. It does not

the energy eigenvalues of the circular billiard model. Plotted is thqnclude for example, any states along the lowest bratkch (

deviationAJ,=[33—J5], whereJ3=k—1/4 andJ;=J, /% as de-  _ 1) shown in Fig. 9, no matter how large the energy of the
termined by Eq.(17b with E=(H), L=(L) substituted from  giate becomes with increasifiy
Eq. (19).

. . - A V. CONCLUSION
In Fig. 8 we have plotted the eigenvalugs) versus(L)

of the two quantum invariants near the bottom of the level In this paper we have investigated a key signature of
spectrum. As in the two-spin model, the regular pattern ofjuantum integrability in systems with two degrees of free-
points is a signature of quantum integrability. In both modelsdom, namely, the functional dependence of the Hamiltonian
the points tend to become displaced irregularly when noningj and the second integral of the motidnon two action
tegrablg perturbat!ons are mtroduc{é'd,lﬂ..' . operatorsly, J,.
The !nteggrk,l in Eqg. (19 can be |dent|f|ec_j as the eigen-  The results presented in Secs. Il and IV for tsemi-
values(in units of#:) of a set of quantum actions: classically quantized and théprimary) quantum energy-
level spectra of two integrable model systems suggest the
A A following interpretation, which is consistent with the conclu-
(Jo)=Al, <‘]2>:ﬁ<k_ Z)' (20 sions inferred from an entirely different line of reasoning
[18]: (i) Quantum integrability implies that the Hamiltonian

The shift in the second expression is dictated by a Maslo$@n be expressed as an operator valued function of the ac-
index a;=1 (see Sec. M[7]. The results of Eq(19) com-  tions:H=Hq(J;,J5), where the eigenvalue spectrum of the
bined with Eq.(20) thus define specific functional relations action operators is of the foriti). (ii) This function is dif-
HQ(jl,jz), IQ(jlajZ) between quantum invariants and ferent from the functiorHc(J;,J,) inferred via semiclassi-
guantum actions. They are to be compared with the funccal quantization from the solution of the classical dynamical
tional relationsH ¢(J;,3,), 1c(3;,3,) as defined by Eq17) problem.(iii) In some asymptotic regime associated with the

combined with Eq(20). classical limit the functiomQ(jl,jz) converges, if properly
For a graphical representation of the quantum correctionscaled, toward the functiod (J;,J,), but the convergence
to semiclassical quantization, we proceed as in Sec. lll. Imeed not be uniform(iv) For the second integral of the mo-

Fig. 9 we plotAJ,=|J$—J5| versusk andl, whereJ¥=k  tion, which (classically guarantees integrability, there
—1/4 andJ; is the value of Eq(17b) when the exact eigen- exist functions|q(J;,J,) and I¢(3;,3,) with analogous
values(19) for the quantum invariants are substituted into properties.
the expression. The existence of action operators as constituent elements
We observe a landscape in the form of a sloped ridgef all quantum invariants in integrable model systems is a
centered akt=0. The largest quantum correction to semiclas-key property necessary to explain the dimensionality of level
sical quantization pertains to the ground statith k=1, | crossing manifolds relative to the dimensionality of integra-
=0). The plot suggests that the quantum corrections die outility manifolds in the parameter space of model systems
for large k. This is confirmed by substitution of the with parametric integrability conditions. On the
asymptotic expression fde1 [12], d,-dimensional integrability manifold in the parameter space

of a given model system, both functionéy(J;,J;) and

16(J1,3,) will then depend continuously on these param-
eters. The quantum eigenvalue spectrum on the integrability

412

| 1
alkwﬁ_@'f'o(ﬁis)v B=k+ 577 (21)
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manifold is determined bme: Hq(<31>,<jz>) and can be regime. The eigenvalues of the two action operators, vyhich
interpreted as a set of continuous functions of the Hamilare the natural quantum numbers of the eigenstates in the

tonian parameters subject to the constraints imposed by tHetegrable regime, must be replaced here by a single quan-
integrability condition. The level crossings, which occur attum number representing the fixed level sequence within any
the intersections of the graphs of any two members from thévariant Hilbert subspace. Clear-cut evidence for two dis-
set of functions, are then naturally confined to tinct parameter regimes pertaining to the action quantum
(d,—1)-dimensional manifolds and are naturally embeddedUmbers(integrable regimeand to the energy-sorting quan-
in the integrability manifold, in agreement with empirical tum number (nonintegrable regime was presented in
evidence[4]. Ref. [5].

For parameter values away from the integrability mani-
fold, no smooth functiod(J,,J,) exists anymore because
action values exist only for the surviving invariant tori, ACKNOWLEDGMENTS
which are no longer dense anywhere in phase space. Like- This work was supported by the Research Office of the
wise, the observed prohibition of level crossings in the nonyniversity of Rhode Island. We are very grateful to Joachim
integrable parameter regime makes it impossible to consisstolze for his comments and suggestions relating to this

tently extend the functioi o(J;,J,) beyond the integrable work.
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