1,273 research outputs found

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately

    Exact analytic results for the Gutzwiller wave function with finite magnetization

    Full text link
    We present analytic results for ground-state properties of Hubbard-type models in terms of the Gutzwiller variational wave function with non-zero values of the magnetization m. In dimension D=1 approximation-free evaluations are made possible by appropriate canonical transformations and an analysis of Umklapp processes. We calculate the double occupation and the momentum distribution, as well as its discontinuity at the Fermi surface, for arbitrary values of the interaction parameter g, density n, and magnetization m. These quantities determine the expectation value of the one-dimensional Hubbard Hamiltonian for any symmetric, monotonically increasing dispersion epsilon_k. In particular for nearest-neighbor hopping and densities away from half filling the Gutzwiller wave function is found to predict ferromagnetic behavior for sufficiently large interaction U.Comment: REVTeX 4, 32 pages, 8 figure

    <i>‘What retention’ means to me</i>: the position of the adult learner in student retention

    Get PDF
    Studies of student retention and progression overwhelmingly appear adopt definitions that place the institution, rather than the student, at the centre. Retention is most often conceived in terms of linear and continuous progress between institutionally identified start and end points. This paper reports on research that considered data from 38 in-depth interviews conducted with individuals who had characteristics often associated with non-traditional engagement in higher education who between 2006 and 2010 had studied an ‘Introduction to HE’ module at one distance higher education institution, some of whom had progressed to further study at that institution, some of whom had not. The research deployed a life histories approach to seek a finer grained understanding of how individuals conceptualise their own learning journey and experience, in order to reflect on institutional conceptions of student retention. The findings highlight potential anomalies hidden within institutional retention rates – large proportions of the interview participants who were not ‘retained’ by the institution reported successful progression to and in other learning institutions and environments, both formal and informal. Nearly all described positive perspectives on lifelong learning which were either engendered or improved by the learning undertaken. This attests to the complexity of individuals’ lives and provides clear evidence that institution-centric definitions of retention and progression are insufficient to create truly meaningful understanding of successful individual learning journeys and experiences. It is argued that only through careful consideration of the lived experience of students and a re-conception of measures of retention, will we be able to offer real insight into improving student retention

    The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    Full text link
    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion, and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher-order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model.Comment: 13 pages, 13 figure

    Spatial Correlations in Dynamical Mean Field Theory

    Full text link
    We further develop an extended dynamical mean field approach introduced earlier. It goes beyond the standard D=∞D=\infty dynamical mean field theory by incorporating quantum fluctuations associated with intersite (RKKY-like) interactions. This is achieved by scaling the intersite interactions to the same power in 1/D as that for the kinetic terms. In this approach, a correlated lattice problem is reduced to a single-impurity Anderson model with additional self-consistent bosonic baths. Here, we formulate the approach in terms of perturbation expansions. We show that the two-particle vertex functions are momentum-dependent, while the single-particle self-energy remains local. In spite of this, the approach is conserving. Finally, we also determine the form of a momentum-dependent dynamical susceptibility; the resulting expression relates it to the corresponding Weiss field, local correlation function and (momentum-dependent) intersite coupling.Comment: 28 pages, REVTEX, 8 figures include

    Renormalization Group Approach to the Infrared Behavior of a Zero-Temperature Bose System

    Full text link
    We exploit the renormalization-group approach to establish the {\em exact} infrared behavior of an interacting Bose system at zero temperature. The local-gauge symmetry in the broken-symmetry phase is implemented through the associated Ward identities, which reduce the number of independent running couplings to a single one. For this coupling the ϵ\epsilon-expansion can be controlled to all orders in ϵ\epsilon (=3−d=3-d). For spatial dimensions 1<d≤31 < d \leq 3 the Bogoliubov fixed point is unstable towards a different fixed point characterized by the divergence of the longitudinal correlation function. The Bogoliubov linear spectrum, however, is found to be independent from the critical behavior of this correlation function, being exactly constrained by Ward identities. The new fixed point properly gives a finite value of the coupling among transverse fluctuations, but due to virtual intermediate longitudinal fluctuations the effective coupling affecting the transverse correlation function flows to zero. As a result, no transverse anomalous dimension is present. This treatment allows us to recover known results for the quantum Bose gas in the context of a unifying framework and also to reveal the non-trivial skeleton structure of its perturbation theory.Comment: 21 page

    Compressed AFM-IR hyperspectral nanoimaging

    Get PDF
    Infrared (IR) hyperspectral imaging is a powerful approach in the field of materials and life sciences. However, for the extension to modern sub-diffraction nanoimaging it still remains a highly inefficient technique, as it acquires data via inherent sequential schemes. Here, we introduce the mathematical technique of low-rank matrix reconstruction to the sub-diffraction scheme of atomic force microscopy-based infrared spectroscopy (AFM-IR), for efficient hyperspectral IR nanoimaging. To demonstrate its application potential, we chose the trypanosomatid unicellular parasites Leishmania species as a realistic target of biological importance. The mid-IR spectral fingerprint window covering the spectral range from 1300 to 1900 cm−1 was chosen and a distance between the data points of 220 nm was used for nanoimaging of single parasites. The method of k-means cluster analysis was used for extracting the chemically distinct spatial locations. Subsequently, we randomly selected only 10% of an originally gathered data cube of 134 (x) × 50 (y) × 148 (spectral) AFM-IR measurements and completed the full data set by low-rank matrix reconstruction. This approach shows agreement in the cluster regions between full and reconstructed data cubes. Furthermore, we show that the results of the low-rank reconstruction are superior compared to alternative interpolation techniques in terms of error-metrics, cluster quality, and spectral interpretation for various subsampling ratios. We conclude that by using low-rank matrix reconstruction the data acquisition time can be reduced from more than 14 h to 1–2 h. These findings can significantly boost the practical applicability of hyperspectral nanoimaging in both academic and industrial settings involving nano- and bio-materials

    Weak-coupling expansions for the attractive Holstein and Hubbard models

    Full text link
    Weak-coupling expansions (conserving approximations) are carried out for the attractive Holstein and Hubbard models (on an infinite-dimensional hypercubic lattice) that include all bandstructure and vertex correction effects. Quantum fluctuations are found to renormalize transition temperatures by factors of order unity, but may be incorporated into the superconducting channel of Migdal-Eliashberg theory by renormalizing the phonon frequency and the interaction strength.Comment: 10 pages, (five figures available from the author by request) typeset with ReVTeX, preprint NSF-ITP-93-10

    Pair fluctuation induced pseudogap in the normal phase of the two-dimensional attractive Hubbard model at weak coupling

    Full text link
    One-particle spectral properties in the normal phase of the two-dimensional attractive Hubbard model are investigated in the weak coupling regime using the non-selfconsistent T-matrix approximation. The corresponding equations are evaluated numerically directly on the real frequency axis. For temperatures sufficiently close to the superconducting transition temperature a pseudogap in the one-particle spectral function is observed, which can be assigned to the increasing importance of pair fluctuations.Comment: 22 pages, 13 figure
    • …
    corecore