62 research outputs found

    Predicting total reaction cross sections for nucleon-nucleus scattering

    Get PDF
    Nucleon total reaction and neutron total cross sections to 300 MeV for 12C and 208Pb, and for 65 MeV spanning the mass range, are predicted using coordinate space optical potentials formed by full folding of effective nucleon-nucleon interactions with realistic nuclear ground state densities. Good to excellent agreement is found with existing data.Comment: 10 pages, 4 figure

    Formula for proton-nucleus reaction cross section at intermediate energies and its application

    Full text link
    We construct a formula for proton-nucleus total reaction cross section as a function of the mass and neutron excess of the target nucleus and the proton incident energy. We deduce the dependence of the cross section on the mass number and the proton incident energy from a simple argument involving the proton optical depth within the framework of a black sphere approximation of nuclei, while we describe the neutron excess dependence by introducing the density derivative of the symmetry energy, L, on the basis of a radius formula constructed from macroscopic nuclear models. We find that the cross section formula can reproduce the energy dependence of the cross section measured for stable nuclei without introducing any adjustable energy dependent parameter. We finally discuss whether or not the reaction cross section is affected by an extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys

    Get PDF
    Abstract. We enrich the classical notion of group key exchange (GKE) protocols by a new property that allows each pair of users to derive an independent peer-to-peer (p2p) key on-demand and without any subsequent communication; this, in addition to the classical group key shared amongst all the users. We show that GKE protocols enriched in this way impose new security challenges concerning the secrecy and independence of both key types. The special attention should be paid to possible collusion attacks aiming to break the secrecy of p2p keys possibly established between any two non-colluding users. In our constructions we utilize the well-known parallel Diffie-Hellman key exchange (PDHKE) technique in which each party uses the same exponent for the computation of p2p keys with its peers. First, we consider PDHKE in GKE protocols where parties securely transport their secrets for the establishment of the group key. For this we use an efficient multi-recipient ElGamal encryption scheme. Further, based on PDHKE we design a generic compiler for GKE protocols that extend the classical Diffie-Hellman method. Finally, we investigate possible optimizations of these protocols allowing parties to re-use their exponents to compute both group and p2p keys, and show that not all such GKE protocols can be optimized. Key words: group key exchange, peer-to-peer keys, on-demand derivation
    • 

    corecore