4 research outputs found

    Multicenter flow cytometry proficiency testing of canine blood and lymph node samples

    Get PDF
    Background: Flow cytometry (FC) is used increasingly in veterinary medicine for further characterization of hematolymphoid cells. Guidelines for optimizing assay performance and interpretation of results are limited, and concordance of results across laboratories is unknown. Objectives: This study aimed to determine inter-investigator agreement on the interpretation of FC results from split samples analyzed in different laboratories using various protocols, cytometers, and software; and on the interpretation of archived FC standard (FCS) data files contributed by the different investigators. Methods: This was a multicenter observational cross-sectional study. Anticoagulated blood or lymph node aspirate samples from nine client-owned dogs were aliquoted and shipped to participating laboratories. Samples were analyzed with individual laboratory-developed protocols. In addition, FCS files from a set of separate samples from 11 client-owned dogs were analyzed by participating investigators. A person not associated with the study tabulated the results and interpretations. Agreement of interpretations was assessed with Fleiss\u2019 kappa statistic. Results: Prolonged transit times affected sample quality for some laboratories. Overall agreement among investigators regarding the FC sample interpretation was strong (\u3ba = 0.86 \ub1 0.19, P <.001), and for specific categories, ranged from moderate to perfect. Agreement of the lymphoproliferation or other leukocyte sample category from the analysis of the FCS files was weak (\u3ba = 0.58 \ub1 0.05, P <.001). Conclusions: Lymphoproliferations were readily identified by FC, but identification of the categories of hematolymphoid neoplasia in fresh samples or archived files was variable. There is a need for a more standardized approach to maximize the enormous potential of FC in veterinary medicine

    Platelet-derived growth factors and receptors in canine lymphoma

    No full text
    Platelet-derived growth factors (PDGFs) belong to a family of polypeptide growth factors that signal through cell surface tyrosine kinase receptors to stimulate growth, proliferation and differentiation. Platelet-derived growth factor receptors (PDGFRs) are also considered important targets for specific kinase inhibitors in the treatment of several human tumours. The aim of this study was to investigate the role of PDGF-A, PDGFB, PDGFR-alpha and PDGFR-beta in canine lymphoma by determining gene and protein expression in lymph nodes of dogs with diffuse large B-cell lymphoma (DLBCL), peripheral T-cell lymphoma (PTCL), T-Iymphoblastic lymphoma (T-LBL) and in healthy control dogs. One lymph node was also studied at the end of therapy in a subset of dogs in remission for DLBCL. In controls, PDGF-A, PDGFR-alpha and PDGFR-beta mRNA levels were significantly higher than in DLBCLs, PTCLs and T-LBLs. However, PDGFR-alpha and PDGFR-beta were minimally expressed by lymphocytes and plasma cells in normal lymph nodes as determined by immunohistochemistry, while neoplastic B and T cells showed the highest score (P <0.05). This discordant result may be compatible with the constitutive expression of these molecules by endothelial cells and fibroblasts in normal lymph nodes, thereby influencing gene expression results. Furthermore, these cells were not included in the immunohistochemical analysis. Similarly, dogs with DLBCL that were in remission at the end of therapy showed significantly higher gene expression of PDGFs and receptors than at the time of diagnosis and with an opposite trend to the protein assay. PDGF-B protein and mRNA were overexpressed in PTCLs and T-LBLs when compared with DLBCLs and controls (P <0.05). Additionally, there was a correlation between protein expression of PDGF-B and both PDGFRs in PTCLs and T-LBLs, suggesting an autocrine or paracrine loop in the aetiology of aggressive canine T-cell lymphomas. These data provide a rationale for the use of PDGFR antagonists in the therapy of aggressive T-cell lymphomas, but not in DLBCLs. (C) 2014 Elsevier Ltd. All rights reserved

    Mammalian empathy: behavioural manifestations and neural basis

    No full text
    corecore